Cargando…

Electrical Resistivity-Based Study of Self-Sensing Properties for Shape Memory Alloy-Actuated Artificial Muscle

Shape memory alloy (SMA) has great potential to develop light and compact artificial muscle (AM) due to its muscle-like high power-to-weight ratio, flexibility and silent operation properties. In this paper, SMA self-sensing properties are explored and modeled in depth to imitate the integrated musc...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jian-Jun, Yin, Yue-Hong, Zhu, Jian-Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859044/
https://www.ncbi.nlm.nih.gov/pubmed/24077316
http://dx.doi.org/10.3390/s131012958
Descripción
Sumario:Shape memory alloy (SMA) has great potential to develop light and compact artificial muscle (AM) due to its muscle-like high power-to-weight ratio, flexibility and silent operation properties. In this paper, SMA self-sensing properties are explored and modeled in depth to imitate the integrated muscle-like functions of actuating and self-sensing for SMA-AM based on the investigation of SMA electrical resistivity (ER). Firstly, an ER transformation kinetics model is proposed based on the simulation of SMA differential scanning calorimetry (DSC) curves. Then a series of thermal-electrical-mechanical experiments are carried out to verify the validity of the ER model, whereby the SMA-AM self-sensing function is well established under different stress conditions. Finally the self-sensing capability is further demonstrated by its application to a novel SMA-AM-actuated active ankle-foot orthosis (AAFO).