Cargando…

Biodiversity Assessment Using Hierarchical Agglomerative Clustering and Spectral Unmixing over Hyperspectral Images

Hyperspectral images represent an important source of information to assess ecosystem biodiversity. In particular, plant species richness is a primary indicator of biodiversity. This paper uses spectral variance to predict vegetation richness, known as Spectral Variation Hypothesis. Hierarchical agg...

Descripción completa

Detalles Bibliográficos
Autores principales: Medina, Ollantay, Manian, Vidya, Chinea, J. Danilo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859101/
https://www.ncbi.nlm.nih.gov/pubmed/24132230
http://dx.doi.org/10.3390/s131013949
_version_ 1782295381725413376
author Medina, Ollantay
Manian, Vidya
Chinea, J. Danilo
author_facet Medina, Ollantay
Manian, Vidya
Chinea, J. Danilo
author_sort Medina, Ollantay
collection PubMed
description Hyperspectral images represent an important source of information to assess ecosystem biodiversity. In particular, plant species richness is a primary indicator of biodiversity. This paper uses spectral variance to predict vegetation richness, known as Spectral Variation Hypothesis. Hierarchical agglomerative clustering is our primary tool to retrieve clusters whose Shannon entropy should reflect species richness on a given zone. However, in a high spectral mixing scenario, an additional unmixing step, just before entropy computation, is required; cluster centroids are enough for the unmixing process. Entropies computed using the proposed method correlate well with the ones calculated directly from synthetic and field data.
format Online
Article
Text
id pubmed-3859101
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Molecular Diversity Preservation International (MDPI)
record_format MEDLINE/PubMed
spelling pubmed-38591012013-12-11 Biodiversity Assessment Using Hierarchical Agglomerative Clustering and Spectral Unmixing over Hyperspectral Images Medina, Ollantay Manian, Vidya Chinea, J. Danilo Sensors (Basel) Article Hyperspectral images represent an important source of information to assess ecosystem biodiversity. In particular, plant species richness is a primary indicator of biodiversity. This paper uses spectral variance to predict vegetation richness, known as Spectral Variation Hypothesis. Hierarchical agglomerative clustering is our primary tool to retrieve clusters whose Shannon entropy should reflect species richness on a given zone. However, in a high spectral mixing scenario, an additional unmixing step, just before entropy computation, is required; cluster centroids are enough for the unmixing process. Entropies computed using the proposed method correlate well with the ones calculated directly from synthetic and field data. Molecular Diversity Preservation International (MDPI) 2013-10-15 /pmc/articles/PMC3859101/ /pubmed/24132230 http://dx.doi.org/10.3390/s131013949 Text en © 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Article
Medina, Ollantay
Manian, Vidya
Chinea, J. Danilo
Biodiversity Assessment Using Hierarchical Agglomerative Clustering and Spectral Unmixing over Hyperspectral Images
title Biodiversity Assessment Using Hierarchical Agglomerative Clustering and Spectral Unmixing over Hyperspectral Images
title_full Biodiversity Assessment Using Hierarchical Agglomerative Clustering and Spectral Unmixing over Hyperspectral Images
title_fullStr Biodiversity Assessment Using Hierarchical Agglomerative Clustering and Spectral Unmixing over Hyperspectral Images
title_full_unstemmed Biodiversity Assessment Using Hierarchical Agglomerative Clustering and Spectral Unmixing over Hyperspectral Images
title_short Biodiversity Assessment Using Hierarchical Agglomerative Clustering and Spectral Unmixing over Hyperspectral Images
title_sort biodiversity assessment using hierarchical agglomerative clustering and spectral unmixing over hyperspectral images
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859101/
https://www.ncbi.nlm.nih.gov/pubmed/24132230
http://dx.doi.org/10.3390/s131013949
work_keys_str_mv AT medinaollantay biodiversityassessmentusinghierarchicalagglomerativeclusteringandspectralunmixingoverhyperspectralimages
AT manianvidya biodiversityassessmentusinghierarchicalagglomerativeclusteringandspectralunmixingoverhyperspectralimages
AT chineajdanilo biodiversityassessmentusinghierarchicalagglomerativeclusteringandspectralunmixingoverhyperspectralimages