Cargando…

Shapes displayed with durations in the microsecond range do not obey Bloch's law of temporal summation

Shape patterns were displayed with simultaneous brief flashes from a light-emitting diode array. Flash durations in the microsecond range and luminous intensities were adjusted to vary the degree of successful shape recognition. Four experiments were conducted to test whether Bloch's law would...

Descripción completa

Detalles Bibliográficos
Autores principales: Greene, Ernest, Ogden, R. Todd
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pion 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859558/
https://www.ncbi.nlm.nih.gov/pubmed/24349700
http://dx.doi.org/10.1068/i0602
Descripción
Sumario:Shape patterns were displayed with simultaneous brief flashes from a light-emitting diode array. Flash durations in the microsecond range and luminous intensities were adjusted to vary the degree of successful shape recognition. Four experiments were conducted to test whether Bloch's law would apply in this task. Bloch's law holds that for very brief flashes the perceptual threshold is determined by the total number of photons being delivered, i.e., there is reciprocity of intensity and duration. The present results did not find that effectiveness of flashes was based on the total quantity of photons, as predicted by Bloch's law. Additionally, the evidence points to a visual mechanism that has ultra-high temporal precision that either registers the rate of photon flux or the duration of flashes.