Cargando…

Grape seed extract attenuates arsenic-induced nephrotoxicity in rats

Oxidative stress is a recognized factor in nephrotoxicity induced by chronic exposure to inorganic arsenic (As). Grape seed extract (GSE) possesses antioxidant properties. The present study was designed to evaluate the beneficial effects of GSE against arsenic-induced renal injury. Healthy, male Spr...

Descripción completa

Detalles Bibliográficos
Autores principales: ZHANG, JIANGONG, PAN, XINJUAN, LI, NING, LI, XING, WANG, YONGCHAO, LIU, XIAOZHUAN, YIN, XINJUAN, YU, ZENGLI
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861237/
https://www.ncbi.nlm.nih.gov/pubmed/24348802
http://dx.doi.org/10.3892/etm.2013.1381
_version_ 1782295606382821376
author ZHANG, JIANGONG
PAN, XINJUAN
LI, NING
LI, XING
WANG, YONGCHAO
LIU, XIAOZHUAN
YIN, XINJUAN
YU, ZENGLI
author_facet ZHANG, JIANGONG
PAN, XINJUAN
LI, NING
LI, XING
WANG, YONGCHAO
LIU, XIAOZHUAN
YIN, XINJUAN
YU, ZENGLI
author_sort ZHANG, JIANGONG
collection PubMed
description Oxidative stress is a recognized factor in nephrotoxicity induced by chronic exposure to inorganic arsenic (As). Grape seed extract (GSE) possesses antioxidant properties. The present study was designed to evaluate the beneficial effects of GSE against arsenic-induced renal injury. Healthy, male Sprague-Dawley rats were exposed to As in drinking water (30 ppm) with or without GSE (100 mg/kg) for 12 months. The serum proinflammatory cytokine levels and mRNA expression levels of fibrogenic markers in the renal tissues were evaluated using enzyme-linked immunosorbent assay and quantitative polymerase chain reaction, respectively. The protein expression levels of nicotinamide adenine dinucleotide phosphate (NADPH) subunits, transforming growth factor-β1 (TGF-β1) and phosphorylated Smad2/3 (pSmad2/3) were assessed using western blot analysis. The results demonstrated that cotreatment with GSE significantly improved renal function, as demonstrated by the reductions in relative kidney weight (% of body weight) and blood urea nitrogen, and the increase in the creatinine clearance capacity. GSE attenuated the As-induced changes in the serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β and the mRNA levels of TGF-β1, α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF) and fibronectin (FN) in renal tissue. Furthermore, administration of GSE markedly reduced As-stimulated reactive oxygen species (ROS) production and Nox activity, as well as the protein expression levels of the NADPH subunits (Nox2, p47phox and Nox4). In addition, GSE cotreatment was correlated with a significant reduction in TGF-β/Smad signaling, as demonstrated by the decreased protein levels of TGF-β1 and pSmad2/3 in renal tissue. This study indicated that GSE may be a useful agent for the prevention of nephrotoxicity induced by chronic exposure to As. GSE may exert its effects through the suppression of Nox and inhibition of TGF-β/Smad signaling activation.
format Online
Article
Text
id pubmed-3861237
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-38612372013-12-13 Grape seed extract attenuates arsenic-induced nephrotoxicity in rats ZHANG, JIANGONG PAN, XINJUAN LI, NING LI, XING WANG, YONGCHAO LIU, XIAOZHUAN YIN, XINJUAN YU, ZENGLI Exp Ther Med Articles Oxidative stress is a recognized factor in nephrotoxicity induced by chronic exposure to inorganic arsenic (As). Grape seed extract (GSE) possesses antioxidant properties. The present study was designed to evaluate the beneficial effects of GSE against arsenic-induced renal injury. Healthy, male Sprague-Dawley rats were exposed to As in drinking water (30 ppm) with or without GSE (100 mg/kg) for 12 months. The serum proinflammatory cytokine levels and mRNA expression levels of fibrogenic markers in the renal tissues were evaluated using enzyme-linked immunosorbent assay and quantitative polymerase chain reaction, respectively. The protein expression levels of nicotinamide adenine dinucleotide phosphate (NADPH) subunits, transforming growth factor-β1 (TGF-β1) and phosphorylated Smad2/3 (pSmad2/3) were assessed using western blot analysis. The results demonstrated that cotreatment with GSE significantly improved renal function, as demonstrated by the reductions in relative kidney weight (% of body weight) and blood urea nitrogen, and the increase in the creatinine clearance capacity. GSE attenuated the As-induced changes in the serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β and the mRNA levels of TGF-β1, α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF) and fibronectin (FN) in renal tissue. Furthermore, administration of GSE markedly reduced As-stimulated reactive oxygen species (ROS) production and Nox activity, as well as the protein expression levels of the NADPH subunits (Nox2, p47phox and Nox4). In addition, GSE cotreatment was correlated with a significant reduction in TGF-β/Smad signaling, as demonstrated by the decreased protein levels of TGF-β1 and pSmad2/3 in renal tissue. This study indicated that GSE may be a useful agent for the prevention of nephrotoxicity induced by chronic exposure to As. GSE may exert its effects through the suppression of Nox and inhibition of TGF-β/Smad signaling activation. D.A. Spandidos 2014-01 2013-11-05 /pmc/articles/PMC3861237/ /pubmed/24348802 http://dx.doi.org/10.3892/etm.2013.1381 Text en Copyright © 2014, Spandidos Publications http://creativecommons.org/licenses/by/3.0 This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.
spellingShingle Articles
ZHANG, JIANGONG
PAN, XINJUAN
LI, NING
LI, XING
WANG, YONGCHAO
LIU, XIAOZHUAN
YIN, XINJUAN
YU, ZENGLI
Grape seed extract attenuates arsenic-induced nephrotoxicity in rats
title Grape seed extract attenuates arsenic-induced nephrotoxicity in rats
title_full Grape seed extract attenuates arsenic-induced nephrotoxicity in rats
title_fullStr Grape seed extract attenuates arsenic-induced nephrotoxicity in rats
title_full_unstemmed Grape seed extract attenuates arsenic-induced nephrotoxicity in rats
title_short Grape seed extract attenuates arsenic-induced nephrotoxicity in rats
title_sort grape seed extract attenuates arsenic-induced nephrotoxicity in rats
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861237/
https://www.ncbi.nlm.nih.gov/pubmed/24348802
http://dx.doi.org/10.3892/etm.2013.1381
work_keys_str_mv AT zhangjiangong grapeseedextractattenuatesarsenicinducednephrotoxicityinrats
AT panxinjuan grapeseedextractattenuatesarsenicinducednephrotoxicityinrats
AT lining grapeseedextractattenuatesarsenicinducednephrotoxicityinrats
AT lixing grapeseedextractattenuatesarsenicinducednephrotoxicityinrats
AT wangyongchao grapeseedextractattenuatesarsenicinducednephrotoxicityinrats
AT liuxiaozhuan grapeseedextractattenuatesarsenicinducednephrotoxicityinrats
AT yinxinjuan grapeseedextractattenuatesarsenicinducednephrotoxicityinrats
AT yuzengli grapeseedextractattenuatesarsenicinducednephrotoxicityinrats