Cargando…

Quantum State Tomography via Linear Regression Estimation

A simple yet efficient state reconstruction algorithm of linear regression estimation (LRE) is presented for quantum state tomography. In this method, quantum state reconstruction is converted into a parameter estimation problem of a linear regression model and the least-squares method is employed t...

Descripción completa

Detalles Bibliográficos
Autores principales: Qi, Bo, Hou, Zhibo, Li, Li, Dong, Daoyi, Xiang, Guoyong, Guo, Guangcan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861803/
https://www.ncbi.nlm.nih.gov/pubmed/24336519
http://dx.doi.org/10.1038/srep03496
_version_ 1782295688959229952
author Qi, Bo
Hou, Zhibo
Li, Li
Dong, Daoyi
Xiang, Guoyong
Guo, Guangcan
author_facet Qi, Bo
Hou, Zhibo
Li, Li
Dong, Daoyi
Xiang, Guoyong
Guo, Guangcan
author_sort Qi, Bo
collection PubMed
description A simple yet efficient state reconstruction algorithm of linear regression estimation (LRE) is presented for quantum state tomography. In this method, quantum state reconstruction is converted into a parameter estimation problem of a linear regression model and the least-squares method is employed to estimate the unknown parameters. An asymptotic mean squared error (MSE) upper bound for all possible states to be estimated is given analytically, which depends explicitly upon the involved measurement bases. This analytical MSE upper bound can guide one to choose optimal measurement sets. The computational complexity of LRE is O(d(4)) where d is the dimension of the quantum state. Numerical examples show that LRE is much faster than maximum-likelihood estimation for quantum state tomography.
format Online
Article
Text
id pubmed-3861803
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-38618032013-12-13 Quantum State Tomography via Linear Regression Estimation Qi, Bo Hou, Zhibo Li, Li Dong, Daoyi Xiang, Guoyong Guo, Guangcan Sci Rep Article A simple yet efficient state reconstruction algorithm of linear regression estimation (LRE) is presented for quantum state tomography. In this method, quantum state reconstruction is converted into a parameter estimation problem of a linear regression model and the least-squares method is employed to estimate the unknown parameters. An asymptotic mean squared error (MSE) upper bound for all possible states to be estimated is given analytically, which depends explicitly upon the involved measurement bases. This analytical MSE upper bound can guide one to choose optimal measurement sets. The computational complexity of LRE is O(d(4)) where d is the dimension of the quantum state. Numerical examples show that LRE is much faster than maximum-likelihood estimation for quantum state tomography. Nature Publishing Group 2013-12-13 /pmc/articles/PMC3861803/ /pubmed/24336519 http://dx.doi.org/10.1038/srep03496 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by/3.0/ This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/
spellingShingle Article
Qi, Bo
Hou, Zhibo
Li, Li
Dong, Daoyi
Xiang, Guoyong
Guo, Guangcan
Quantum State Tomography via Linear Regression Estimation
title Quantum State Tomography via Linear Regression Estimation
title_full Quantum State Tomography via Linear Regression Estimation
title_fullStr Quantum State Tomography via Linear Regression Estimation
title_full_unstemmed Quantum State Tomography via Linear Regression Estimation
title_short Quantum State Tomography via Linear Regression Estimation
title_sort quantum state tomography via linear regression estimation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861803/
https://www.ncbi.nlm.nih.gov/pubmed/24336519
http://dx.doi.org/10.1038/srep03496
work_keys_str_mv AT qibo quantumstatetomographyvialinearregressionestimation
AT houzhibo quantumstatetomographyvialinearregressionestimation
AT lili quantumstatetomographyvialinearregressionestimation
AT dongdaoyi quantumstatetomographyvialinearregressionestimation
AT xiangguoyong quantumstatetomographyvialinearregressionestimation
AT guoguangcan quantumstatetomographyvialinearregressionestimation