Cargando…
Quantum State Tomography via Linear Regression Estimation
A simple yet efficient state reconstruction algorithm of linear regression estimation (LRE) is presented for quantum state tomography. In this method, quantum state reconstruction is converted into a parameter estimation problem of a linear regression model and the least-squares method is employed t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861803/ https://www.ncbi.nlm.nih.gov/pubmed/24336519 http://dx.doi.org/10.1038/srep03496 |
_version_ | 1782295688959229952 |
---|---|
author | Qi, Bo Hou, Zhibo Li, Li Dong, Daoyi Xiang, Guoyong Guo, Guangcan |
author_facet | Qi, Bo Hou, Zhibo Li, Li Dong, Daoyi Xiang, Guoyong Guo, Guangcan |
author_sort | Qi, Bo |
collection | PubMed |
description | A simple yet efficient state reconstruction algorithm of linear regression estimation (LRE) is presented for quantum state tomography. In this method, quantum state reconstruction is converted into a parameter estimation problem of a linear regression model and the least-squares method is employed to estimate the unknown parameters. An asymptotic mean squared error (MSE) upper bound for all possible states to be estimated is given analytically, which depends explicitly upon the involved measurement bases. This analytical MSE upper bound can guide one to choose optimal measurement sets. The computational complexity of LRE is O(d(4)) where d is the dimension of the quantum state. Numerical examples show that LRE is much faster than maximum-likelihood estimation for quantum state tomography. |
format | Online Article Text |
id | pubmed-3861803 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-38618032013-12-13 Quantum State Tomography via Linear Regression Estimation Qi, Bo Hou, Zhibo Li, Li Dong, Daoyi Xiang, Guoyong Guo, Guangcan Sci Rep Article A simple yet efficient state reconstruction algorithm of linear regression estimation (LRE) is presented for quantum state tomography. In this method, quantum state reconstruction is converted into a parameter estimation problem of a linear regression model and the least-squares method is employed to estimate the unknown parameters. An asymptotic mean squared error (MSE) upper bound for all possible states to be estimated is given analytically, which depends explicitly upon the involved measurement bases. This analytical MSE upper bound can guide one to choose optimal measurement sets. The computational complexity of LRE is O(d(4)) where d is the dimension of the quantum state. Numerical examples show that LRE is much faster than maximum-likelihood estimation for quantum state tomography. Nature Publishing Group 2013-12-13 /pmc/articles/PMC3861803/ /pubmed/24336519 http://dx.doi.org/10.1038/srep03496 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by/3.0/ This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Article Qi, Bo Hou, Zhibo Li, Li Dong, Daoyi Xiang, Guoyong Guo, Guangcan Quantum State Tomography via Linear Regression Estimation |
title | Quantum State Tomography via Linear Regression Estimation |
title_full | Quantum State Tomography via Linear Regression Estimation |
title_fullStr | Quantum State Tomography via Linear Regression Estimation |
title_full_unstemmed | Quantum State Tomography via Linear Regression Estimation |
title_short | Quantum State Tomography via Linear Regression Estimation |
title_sort | quantum state tomography via linear regression estimation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861803/ https://www.ncbi.nlm.nih.gov/pubmed/24336519 http://dx.doi.org/10.1038/srep03496 |
work_keys_str_mv | AT qibo quantumstatetomographyvialinearregressionestimation AT houzhibo quantumstatetomographyvialinearregressionestimation AT lili quantumstatetomographyvialinearregressionestimation AT dongdaoyi quantumstatetomographyvialinearregressionestimation AT xiangguoyong quantumstatetomographyvialinearregressionestimation AT guoguangcan quantumstatetomographyvialinearregressionestimation |