Cargando…
Developing and evaluating an automated appendicitis risk stratification algorithm for pediatric patients in the emergency department
OBJECTIVE: To evaluate a proposed natural language processing (NLP) and machine-learning based automated method to risk stratify abdominal pain patients by analyzing the content of the electronic health record (EHR). METHODS: We analyzed the EHRs of a random sample of 2100 pediatric emergency depart...
Autores principales: | Deleger, Louise, Brodzinski, Holly, Zhai, Haijun, Li, Qi, Lingren, Todd, Kirkendall, Eric S, Alessandrini, Evaline, Solti, Imre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861926/ https://www.ncbi.nlm.nih.gov/pubmed/24130231 http://dx.doi.org/10.1136/amiajnl-2013-001962 |
Ejemplares similares
-
A sequence labeling approach to link medications and their attributes in clinical notes and clinical trial announcements for information extraction
por: Li, Qi, et al.
Publicado: (2013) -
Evaluating the impact of pre-annotation on annotation speed and potential bias: natural language processing gold standard development for clinical named entity recognition in clinical trial announcements
por: Lingren, Todd, et al.
Publicado: (2014) -
Automated clinical trial eligibility prescreening: increasing the efficiency of patient identification for clinical trials in the emergency department
por: Ni, Yizhao, et al.
Publicado: (2015) -
Leveraging Food and Drug Administration Adverse Event Reports for the Automated Monitoring of Electronic Health Records in a Pediatric Hospital
por: Tang, Huaxiu, et al.
Publicado: (2017) -
Web 2.0-Based Crowdsourcing for High-Quality Gold Standard Development in Clinical Natural Language Processing
por: Zhai, Haijun, et al.
Publicado: (2013)