Cargando…

Predicting Protein-Protein Interaction by the Mirrortree Method: Possibilities and Limitations

Molecular co-evolution analysis as a sequence-only based method has been used to predict protein-protein interactions. In co-evolution analysis, Pearson's correlation within the mirrortree method is a well-known way of quantifying the correlation between protein pairs. Here we studied the mirro...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Hua, Jakobsson, Eric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3862474/
https://www.ncbi.nlm.nih.gov/pubmed/24349035
http://dx.doi.org/10.1371/journal.pone.0081100
Descripción
Sumario:Molecular co-evolution analysis as a sequence-only based method has been used to predict protein-protein interactions. In co-evolution analysis, Pearson's correlation within the mirrortree method is a well-known way of quantifying the correlation between protein pairs. Here we studied the mirrortree method on both known interacting protein pairs and sets of presumed non-interacting protein pairs, to evaluate the utility of this correlation analysis method for predicting protein-protein interactions within eukaryotes. We varied metrics for computing evolutionary distance and evolutionary span of the species analyzed. We found the differences between co-evolutionary correlation scores of the interacting and non-interacting proteins, normalized for evolutionary span, to be significantly predictive for proteins conserved over a wide range of eukaryotic clades (from mammals to fungi). On the other hand, for narrower ranges of evolutionary span, the predictive power was much weaker.