Cargando…
Digital image processing techniques for detecting, quantifying and classifying plant diseases
This paper presents a survey on methods that use digital image processing techniques to detect, quantify and classify plant diseases from digital images in the visible spectrum. Although disease symptoms can manifest in any part of the plant, only methods that explore visible symptoms in leaves and...
Autor principal: | Arnal Barbedo, Jayme Garcia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863396/ https://www.ncbi.nlm.nih.gov/pubmed/24349961 http://dx.doi.org/10.1186/2193-1801-2-660 |
Ejemplares similares
-
Data Fusion in Agriculture: Resolving Ambiguities and Closing Data Gaps
por: Barbedo, Jayme Garcia Arnal
Publicado: (2022) -
A Study on the Detection of Cattle in UAV Images Using Deep Learning
por: Barbedo, Jayme Garcia Arnal, et al.
Publicado: (2019) -
Using Brainwave Patterns Recorded from Plant Pathology Experts to Increase the Reliability of AI-Based Plant Disease Recognition System
por: Meir, Yonatan, et al.
Publicado: (2023) -
Counting Cattle in UAV Images—Dealing with Clustered Animals and Animal/Background Contrast Changes
por: Barbedo, Jayme Garcia Arnal, et al.
Publicado: (2020) -
Classifiers and their Metrics Quantified
por: Brown, J. B.
Publicado: (2018)