Cargando…

Development and Characterization of Bioadhesive Gel of Microencapsulated Metronidazole for Vaginal Use

The present study concerned with the development and characterization of metronidazole microcapsules prepared by thermal change method using different ratios (1:1, 1:2 and 1:4) of ethyl cellulose in order to select the best microcapsule formulation with a good encapsulation efficiency and drug relea...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhabani Shankar, Nayak, Prasant Kumar, Rout, Udaya Kumar, Nayak, Benoy Brata, Bhowmik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shaheed Beheshti University of Medical Sciences 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863435/
https://www.ncbi.nlm.nih.gov/pubmed/24363730
Descripción
Sumario:The present study concerned with the development and characterization of metronidazole microcapsules prepared by thermal change method using different ratios (1:1, 1:2 and 1:4) of ethyl cellulose in order to select the best microcapsule formulation with a good encapsulation efficiency and drug release profile. The obtained microcapsules were discrete, spherical with free flowing properties and evaluated for particle size, shape, flow properties, wall thickness, drug encapsulation efficiency and in vitro release performance. The drug carrier interactions were investigated in solid state by FT-IR spectroscopy and scanning electron microscopy. The microcapsules with a narrow size range of 23-68 μm showed higher encapsulation efficiency. The selected microcapsule formulation, MC3 (Drug polymer ratio 1:4) was employed for gel formulation with a variety of carbopol polymers (carbopol-934, 940, 974 and 980) by mechanical stirring method in order to develop a sustained release microencapsulated metronidazole microcapsules-containing bioadhesive gel. The prepared bioadhesive gels were evaluated for pH, spreadability, extrudability, viscosity, vaginal irritation, in vitro drug release, bioadhesion, accelerated stability and in vitro drug release kinetic. In vitro experiments indicated a sustained release over 24 h and an acceptable bioadhesion quality for formulation F3. Hence, it can be concluded that the formulation F3 has potential to deliver metronidazole in a controlled and constant manner for prolong period over other formulations and can be adopted for a successful delivery of metronidazole for vaginal use.