Cargando…

Preparation of a Sustained Release Drug Delivery System for Dexamethasone by a Thermosensitive, In Situ Forming Hydrogel for Use in Differentiation of Dental Pulp

In situ forming delivery systems composed of block copolymers are attracting substantial attention due to their ease of use, biocompatibility, and biodegradability. In this study, the thermoresponsive triblock copolymer PLGA-PEG-PLGA was studied as a dexamethasone delivery system. Dexamethasone, a s...

Descripción completa

Detalles Bibliográficos
Autores principales: Khodaverdi, Elham, Kheirandish, Fatemeh, Mirzazadeh Tekie, Farnaz Sadat, Khashyarmanesh, Bibi Zahra, Hadizadeh, Farzin, Moallemzadeh Haghighi, Hamideh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863485/
https://www.ncbi.nlm.nih.gov/pubmed/24369509
http://dx.doi.org/10.1155/2013/983053
Descripción
Sumario:In situ forming delivery systems composed of block copolymers are attracting substantial attention due to their ease of use, biocompatibility, and biodegradability. In this study, the thermoresponsive triblock copolymer PLGA-PEG-PLGA was studied as a dexamethasone delivery system. Dexamethasone, a synthetic glucocorticoid, is used clinically to improve inflammation, pain, and the hyperemesis of chemotherapy, and it is applied experimentally as a differentiation factor in tissue engineering. PLGA-PEG-PLGA was synthesised under microwave irradiation for 5 min. The obtained copolymer was characterised to determine its structure and phase transition temperature. An in vitro release study was conducted for various copolymer structures and drug concentrations. The yield of the reaction and HNMR analysis confirmed the appropriateness of the microwave-assisted method for PLGA-PEG-PLGA synthesis. Phase transition temperature was affected by the drug molecule as well as by the copolymer concentration and structure. An in vitro release study demonstrated that release occurs mainly by diffusion and does not depend on the copolymer structure or dexamethasone concentration.