Cargando…
B-cell lymphoma gene regulatory networks: biological consistency among inference methods
Despite the development of numerous gene regulatory network (GRN) inference methods in the last years, their application, usage and the biological significance of the resulting GRN remains unclear for our general understanding of large-scale gene expression data in routine practice. In our study, we...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864360/ https://www.ncbi.nlm.nih.gov/pubmed/24379827 http://dx.doi.org/10.3389/fgene.2013.00281 |
_version_ | 1782295921710596096 |
---|---|
author | de Matos Simoes, Ricardo Dehmer, Matthias Emmert-Streib, Frank |
author_facet | de Matos Simoes, Ricardo Dehmer, Matthias Emmert-Streib, Frank |
author_sort | de Matos Simoes, Ricardo |
collection | PubMed |
description | Despite the development of numerous gene regulatory network (GRN) inference methods in the last years, their application, usage and the biological significance of the resulting GRN remains unclear for our general understanding of large-scale gene expression data in routine practice. In our study, we conduct a structural and a functional analysis of B-cell lymphoma GRNs that were inferred using 3 mutual information-based GRN inference methods: C3Net, BC3Net and Aracne. From a comparative analysis on the global level, we find that the inferred B-cell lymphoma GRNs show major differences. However, on the edge-level and the functional-level—that are more important for our biological understanding—the B-cell lymphoma GRNs were highly similar among each other. Also, the ranks of the degree centrality values and major hub genes in the inferred networks are highly conserved as well. Interestingly, the major hub genes of all GRNs are associated with the G-protein-coupled receptor pathway, cell-cell signaling and cell cycle. This implies that hub genes of the GRNs can be highly consistently inferred with C3Net, BC3Net, and Aracne, representing prominent targets for signaling pathways. Finally, we describe the functional and structural relationship between C3Net, BC3Net and Aracne gene regulatory networks. Our study shows that these GRNs that are inferred from large-scale gene expression data are promising for the identification of novel candidate interactions and pathways that play a key role in the underlying mechanisms driving cancer hallmarks. Overall, our comparative analysis reveals that these GRNs inferred with considerably different inference methods contain large amounts of consistent, method independent, biological information. |
format | Online Article Text |
id | pubmed-3864360 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-38643602013-12-30 B-cell lymphoma gene regulatory networks: biological consistency among inference methods de Matos Simoes, Ricardo Dehmer, Matthias Emmert-Streib, Frank Front Genet Genetics Despite the development of numerous gene regulatory network (GRN) inference methods in the last years, their application, usage and the biological significance of the resulting GRN remains unclear for our general understanding of large-scale gene expression data in routine practice. In our study, we conduct a structural and a functional analysis of B-cell lymphoma GRNs that were inferred using 3 mutual information-based GRN inference methods: C3Net, BC3Net and Aracne. From a comparative analysis on the global level, we find that the inferred B-cell lymphoma GRNs show major differences. However, on the edge-level and the functional-level—that are more important for our biological understanding—the B-cell lymphoma GRNs were highly similar among each other. Also, the ranks of the degree centrality values and major hub genes in the inferred networks are highly conserved as well. Interestingly, the major hub genes of all GRNs are associated with the G-protein-coupled receptor pathway, cell-cell signaling and cell cycle. This implies that hub genes of the GRNs can be highly consistently inferred with C3Net, BC3Net, and Aracne, representing prominent targets for signaling pathways. Finally, we describe the functional and structural relationship between C3Net, BC3Net and Aracne gene regulatory networks. Our study shows that these GRNs that are inferred from large-scale gene expression data are promising for the identification of novel candidate interactions and pathways that play a key role in the underlying mechanisms driving cancer hallmarks. Overall, our comparative analysis reveals that these GRNs inferred with considerably different inference methods contain large amounts of consistent, method independent, biological information. Frontiers Media S.A. 2013-12-16 /pmc/articles/PMC3864360/ /pubmed/24379827 http://dx.doi.org/10.3389/fgene.2013.00281 Text en Copyright © 2013 de Matos Simoes, Dehmer and Emmert-Streib. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Genetics de Matos Simoes, Ricardo Dehmer, Matthias Emmert-Streib, Frank B-cell lymphoma gene regulatory networks: biological consistency among inference methods |
title | B-cell lymphoma gene regulatory networks: biological consistency among inference methods |
title_full | B-cell lymphoma gene regulatory networks: biological consistency among inference methods |
title_fullStr | B-cell lymphoma gene regulatory networks: biological consistency among inference methods |
title_full_unstemmed | B-cell lymphoma gene regulatory networks: biological consistency among inference methods |
title_short | B-cell lymphoma gene regulatory networks: biological consistency among inference methods |
title_sort | b-cell lymphoma gene regulatory networks: biological consistency among inference methods |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864360/ https://www.ncbi.nlm.nih.gov/pubmed/24379827 http://dx.doi.org/10.3389/fgene.2013.00281 |
work_keys_str_mv | AT dematossimoesricardo bcelllymphomageneregulatorynetworksbiologicalconsistencyamonginferencemethods AT dehmermatthias bcelllymphomageneregulatorynetworksbiologicalconsistencyamonginferencemethods AT emmertstreibfrank bcelllymphomageneregulatorynetworksbiologicalconsistencyamonginferencemethods |