Cargando…
Joint conditional Gaussian graphical models with multiple sources of genomic data
It is challenging to identify meaningful gene networks because biological interactions are often condition-specific and confounded with external factors. It is necessary to integrate multiple sources of genomic data to facilitate network inference. For example, one can jointly model expression datas...
Autores principales: | Chun, Hyonho, Chen, Min, Li, Bing, Zhao, Hongyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3865369/ https://www.ncbi.nlm.nih.gov/pubmed/24381584 http://dx.doi.org/10.3389/fgene.2013.00294 |
Ejemplares similares
-
Joint estimation of multiple dependent Gaussian graphical models with
applications to mouse genomics
por: Xie, Yuying, et al.
Publicado: (2016) -
Weighted Fused Pathway Graphical Lasso for Joint Estimation of Multiple Gene Networks
por: Wu, Nuosi, et al.
Publicado: (2019) -
Joint Microbial and Metabolomic Network Estimation with the Censored Gaussian Graphical Model
por: Ma, Jing
Publicado: (2020) -
Penalized estimation of the Gaussian graphical model from data with replicates
por: van Wieringen, Wessel N., et al.
Publicado: (2021) -
Graphical Model Selection for Gaussian Conditional Random Fields in the Presence of Latent Variables
por: Frot, Benjamin, et al.
Publicado: (2018)