Cargando…
Langerhans cells are generated by two distinct PU.1-dependent transcriptional networks
Langerhans cells (LCs) are the unique dendritic cells found in the epidermis. While a great deal of attention has focused on defining the developmental origins of LCs, reports addressing the transcriptional network ruling their differentiation remain sparse. We addressed the function of a group of k...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3865480/ https://www.ncbi.nlm.nih.gov/pubmed/24249112 http://dx.doi.org/10.1084/jem.20130930 |
Sumario: | Langerhans cells (LCs) are the unique dendritic cells found in the epidermis. While a great deal of attention has focused on defining the developmental origins of LCs, reports addressing the transcriptional network ruling their differentiation remain sparse. We addressed the function of a group of key DC transcription factors—PU.1, ID2, IRF4, and IRF8—in the establishment of the LC network. We show that although steady-state LC homeostasis depends on PU.1 and ID2, the latter is dispensable for bone marrow–derived LCs. PU.1 controls LC differentiation by regulating the expression of the critical TGF-β responsive transcription factor RUNX3. PU.1 directly binds to the Runx3 regulatory elements in a TGF-β–dependent manner, whereas ectopic expression of RUNX3 rescued LC differentiation in the absence of PU.1 and promoted LC differentiation from PU.1-sufficient progenitors. These findings highlight the dual molecular network underlying LC differentiation, and show the central role of PU.1 in these processes. |
---|