Cargando…
Low-Rank Regularization for Learning Gene Expression Programs
Learning gene expression programs directly from a set of observations is challenging due to the complexity of gene regulation, high noise of experimental measurements, and insufficient number of experimental measurements. Imposing additional constraints with strong and biologically motivated regular...
Autores principales: | Ye, Guibo, Tang, Mengfan, Cai, Jian-Feng, Nie, Qing, Xie, Xiaohui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866120/ https://www.ncbi.nlm.nih.gov/pubmed/24358148 http://dx.doi.org/10.1371/journal.pone.0082146 |
Ejemplares similares
-
Correction: Low-Rank Regularization for Learning Gene Expression Programs
por: Ye, Guibo, et al.
Publicado: (2014) -
Ensemble Dictionary Learning for Single Image Deblurring via Low-Rank Regularization
por: Li, Jinyang, et al.
Publicado: (2019) -
Sparsity and locally low rank regularization for MR fingerprinting
por: Lima da Cruz, Gastão, et al.
Publicado: (2019) -
Gene Feature Extraction Based on Nonnegative Dual Graph Regularized Latent Low-Rank Representation
por: Yang, Guoliang, et al.
Publicado: (2017) -
High-Order Laplacian Regularized Low-Rank Representation for Multimodal Dementia Diagnosis
por: Dong, Aimei, et al.
Publicado: (2021)