Cargando…

EEG-based analysis of human driving performance in turning left and right using Hopfield neural network

In this article a quantitative analysis was devised assessing driver’s cognition responses by exploring the neurobiological information underlying electroencephalographic (EEG) brain signals in a left and right turning experiment on simulator environment. Driving brain signals have been collected by...

Descripción completa

Detalles Bibliográficos
Autores principales: Taghizadeh-Sarabi, Mitra, Niksirat, Kavous Salehzadeh, Khanmohammadi, Sohrab, Nazari, Mohammadali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866377/
https://www.ncbi.nlm.nih.gov/pubmed/24353979
http://dx.doi.org/10.1186/2193-1801-2-662
Descripción
Sumario:In this article a quantitative analysis was devised assessing driver’s cognition responses by exploring the neurobiological information underlying electroencephalographic (EEG) brain signals in a left and right turning experiment on simulator environment. Driving brain signals have been collected by a 19-channel electroencephalogram recording system. The driving pathway has been selected with no obstacles, a set of indicators are used to inform the subjects when they had to turn left or right by means of keyboard left and right arrows. Subsequently in order to remove artifacts, preprocessing is performed on data to achieve high accuracy. Features of signals are extracted by using Fast Fourier Transform (FFT). Absolute power of FFT is used as a basic feature. Scalar Feature selection method is applied to reduce feature dimension. Thereafter dimension-reduced features are fed to Hopfield Neural Network (HNN) recognizing different brain potentials stimulated by turning to left and right. The performances of HNN are evaluated by considering five conditions; before feature extraction, after feature extraction, before reduction of features, after analyzing reduced features and finally subject-wise Hopfield performances respectively. An increase occurred in each level and continued until it has reached its highest 97.6% of accuracy on last condition.