Cargando…
Evaluating larval mosquito resource partitioning in western Kenya using stable isotopes of carbon and nitrogen
BACKGROUND: In sub-Saharan Africa, malaria, transmitted by the Anopheles mosquito, remains one of the foremost public health concerns. Anopheles gambiae, the primary malaria vector in sub-Saharan Africa, is typically associated with ephemeral, sunlit habitats; however, An. gambiae larvae often share...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866463/ https://www.ncbi.nlm.nih.gov/pubmed/24330747 http://dx.doi.org/10.1186/1756-3305-6-353 |
_version_ | 1782296166058164224 |
---|---|
author | Gilbreath, Thomas M Kweka, Eliningaya J Afrane, Yaw A Githeko, Andrew K Yan, Guiyun |
author_facet | Gilbreath, Thomas M Kweka, Eliningaya J Afrane, Yaw A Githeko, Andrew K Yan, Guiyun |
author_sort | Gilbreath, Thomas M |
collection | PubMed |
description | BACKGROUND: In sub-Saharan Africa, malaria, transmitted by the Anopheles mosquito, remains one of the foremost public health concerns. Anopheles gambiae, the primary malaria vector in sub-Saharan Africa, is typically associated with ephemeral, sunlit habitats; however, An. gambiae larvae often share these habitats with other anophelines along with other disease-transmitting and benign mosquito species. Resource limitations within habitats can constrain larval density and development, and this drives competitive interactions among and between species. METHODS: We used naturally occurring stable isotope ratios of carbon and nitrogen to identify resource partitioning among co-occurring larval species in microcosms and natural habitats in western Kenya. We used two and three source mixing models to estimate resource utilization (i.e. bacteria, algae, organic matter) by larvae. RESULTS: Laboratory experiments revealed larval δ(13)C and δ(15)N composition to reflect the food sources they were reared on. Resource partitioning was demonstrated between An. gambiae and Culex quinquefasciatus larvae sharing the same microcosms. Differences in larval δ(13)C and δ(15)N content was also evident in natural habitats, and Anopheles species were consistently more enriched in δ(13)C when compared to culicine larvae. CONCLUSIONS: These observations demonstrate inter-specific resource partitioning between Cx. quinquefasciatus and An. gambiae larvae in natural habitats in western Kenya. This information may be translated into opportunities for targeted larval control efforts by limiting specific larval food resources, or through bio-control utilizing competitors at the same trophic level. |
format | Online Article Text |
id | pubmed-3866463 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-38664632013-12-19 Evaluating larval mosquito resource partitioning in western Kenya using stable isotopes of carbon and nitrogen Gilbreath, Thomas M Kweka, Eliningaya J Afrane, Yaw A Githeko, Andrew K Yan, Guiyun Parasit Vectors Research BACKGROUND: In sub-Saharan Africa, malaria, transmitted by the Anopheles mosquito, remains one of the foremost public health concerns. Anopheles gambiae, the primary malaria vector in sub-Saharan Africa, is typically associated with ephemeral, sunlit habitats; however, An. gambiae larvae often share these habitats with other anophelines along with other disease-transmitting and benign mosquito species. Resource limitations within habitats can constrain larval density and development, and this drives competitive interactions among and between species. METHODS: We used naturally occurring stable isotope ratios of carbon and nitrogen to identify resource partitioning among co-occurring larval species in microcosms and natural habitats in western Kenya. We used two and three source mixing models to estimate resource utilization (i.e. bacteria, algae, organic matter) by larvae. RESULTS: Laboratory experiments revealed larval δ(13)C and δ(15)N composition to reflect the food sources they were reared on. Resource partitioning was demonstrated between An. gambiae and Culex quinquefasciatus larvae sharing the same microcosms. Differences in larval δ(13)C and δ(15)N content was also evident in natural habitats, and Anopheles species were consistently more enriched in δ(13)C when compared to culicine larvae. CONCLUSIONS: These observations demonstrate inter-specific resource partitioning between Cx. quinquefasciatus and An. gambiae larvae in natural habitats in western Kenya. This information may be translated into opportunities for targeted larval control efforts by limiting specific larval food resources, or through bio-control utilizing competitors at the same trophic level. BioMed Central 2013-12-12 /pmc/articles/PMC3866463/ /pubmed/24330747 http://dx.doi.org/10.1186/1756-3305-6-353 Text en Copyright © 2013 Gilbreath et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Gilbreath, Thomas M Kweka, Eliningaya J Afrane, Yaw A Githeko, Andrew K Yan, Guiyun Evaluating larval mosquito resource partitioning in western Kenya using stable isotopes of carbon and nitrogen |
title | Evaluating larval mosquito resource partitioning in western Kenya using stable isotopes of carbon and nitrogen |
title_full | Evaluating larval mosquito resource partitioning in western Kenya using stable isotopes of carbon and nitrogen |
title_fullStr | Evaluating larval mosquito resource partitioning in western Kenya using stable isotopes of carbon and nitrogen |
title_full_unstemmed | Evaluating larval mosquito resource partitioning in western Kenya using stable isotopes of carbon and nitrogen |
title_short | Evaluating larval mosquito resource partitioning in western Kenya using stable isotopes of carbon and nitrogen |
title_sort | evaluating larval mosquito resource partitioning in western kenya using stable isotopes of carbon and nitrogen |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866463/ https://www.ncbi.nlm.nih.gov/pubmed/24330747 http://dx.doi.org/10.1186/1756-3305-6-353 |
work_keys_str_mv | AT gilbreaththomasm evaluatinglarvalmosquitoresourcepartitioninginwesternkenyausingstableisotopesofcarbonandnitrogen AT kwekaeliningayaj evaluatinglarvalmosquitoresourcepartitioninginwesternkenyausingstableisotopesofcarbonandnitrogen AT afraneyawa evaluatinglarvalmosquitoresourcepartitioninginwesternkenyausingstableisotopesofcarbonandnitrogen AT githekoandrewk evaluatinglarvalmosquitoresourcepartitioninginwesternkenyausingstableisotopesofcarbonandnitrogen AT yanguiyun evaluatinglarvalmosquitoresourcepartitioninginwesternkenyausingstableisotopesofcarbonandnitrogen |