Cargando…

In triple negative breast tumor cells, PLC-β2 promotes the conversion of CD133(high) to CD133(low) phenotype and reduces the CD133-related invasiveness

BACKGROUND: Beyond its possible correlation with stemness of tumor cells, CD133/prominin1 is considered an important marker in breast cancer, since it correlates with tumor size, metastasis and clinical stage of triple-negative breast cancers (TNBC), to date the highest risk breast neoplasia. METHOD...

Descripción completa

Detalles Bibliográficos
Autores principales: Brugnoli, Federica, Grassilli, Silvia, Piazzi, Manuela, Palomba, Maria, Nika, Ervin, Bavelloni, Alberto, Capitani, Silvano, Bertagnolo, Valeria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866498/
https://www.ncbi.nlm.nih.gov/pubmed/24330829
http://dx.doi.org/10.1186/1476-4598-12-165
Descripción
Sumario:BACKGROUND: Beyond its possible correlation with stemness of tumor cells, CD133/prominin1 is considered an important marker in breast cancer, since it correlates with tumor size, metastasis and clinical stage of triple-negative breast cancers (TNBC), to date the highest risk breast neoplasia. METHODS: To study the correlation between the levels of CD133 expression and the biology of breast-derived cells, CD133(low) and CD133(high) cell subpopulations isolated from triple negative MDA-MB-231 cells were compared in terms of malignant properties and protein expression. RESULTS: High expression of CD133 characterizes cells with larger adhesion area, lower proliferation rate and reduced migration speed, indicative of a less undifferentiated phenotype. Conversely, when compared with CD133(low) cells, CD133(high) cells show higher invasive capability and increased expression of proteins involved in metastasis and drug-resistance of breast tumors. Among the signalling proteins examined, PLC-β2 expression inversely correlates with the levels of CD133 and has a role in inducing the CD133(high) cells to CD133(low) cells conversion, suggesting that, in TNBC cells, the de-regulation of this PLC isoform is responsible of the switch from an early to a mature tumoral phenotype also by reducing the expression of CD133. CONCLUSIONS: Since CD133 plays a role in determining the invasiveness of CD133(high) cells, it may constitute an attractive target to reduce the metastatic potential of TNBC. In addition, our data showing that the forced up-regulation of PLC-β2 counteracts the invasiveness of CD133-positive MDA-MB-231 cells might contribute to identify unexplored key steps responsible for the TNBC high malignancy, to be considered for potential therapeutic strategies.