Cargando…
Volumetric CT-based segmentation of NSCLC using 3D-Slicer
Accurate volumetric assessment in non-small cell lung cancer (NSCLC) is critical for adequately informing treatments. In this study we assessed the clinical relevance of a semiautomatic computed tomography (CT)-based segmentation method using the competitive region-growing based algorithm, implement...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866632/ https://www.ncbi.nlm.nih.gov/pubmed/24346241 http://dx.doi.org/10.1038/srep03529 |
_version_ | 1782296193988034560 |
---|---|
author | Velazquez, Emmanuel Rios Parmar, Chintan Jermoumi, Mohammed Mak, Raymond H. van Baardwijk, Angela Fennessy, Fiona M. Lewis, John H. De Ruysscher, Dirk Kikinis, Ron Lambin, Philippe Aerts, Hugo J. W. L. |
author_facet | Velazquez, Emmanuel Rios Parmar, Chintan Jermoumi, Mohammed Mak, Raymond H. van Baardwijk, Angela Fennessy, Fiona M. Lewis, John H. De Ruysscher, Dirk Kikinis, Ron Lambin, Philippe Aerts, Hugo J. W. L. |
author_sort | Velazquez, Emmanuel Rios |
collection | PubMed |
description | Accurate volumetric assessment in non-small cell lung cancer (NSCLC) is critical for adequately informing treatments. In this study we assessed the clinical relevance of a semiautomatic computed tomography (CT)-based segmentation method using the competitive region-growing based algorithm, implemented in the free and public available 3D-Slicer software platform. We compared the 3D-Slicer segmented volumes by three independent observers, who segmented the primary tumour of 20 NSCLC patients twice, to manual slice-by-slice delineations of five physicians. Furthermore, we compared all tumour contours to the macroscopic diameter of the tumour in pathology, considered as the “gold standard”. The 3D-Slicer segmented volumes demonstrated high agreement (overlap fractions > 0.90), lower volume variability (p = 0.0003) and smaller uncertainty areas (p = 0.0002), compared to manual slice-by-slice delineations. Furthermore, 3D-Slicer segmentations showed a strong correlation to pathology (r = 0.89, 95%CI, 0.81–0.94). Our results show that semiautomatic 3D-Slicer segmentations can be used for accurate contouring and are more stable than manual delineations. Therefore, 3D-Slicer can be employed as a starting point for treatment decisions or for high-throughput data mining research, such as Radiomics, where manual delineating often represent a time-consuming bottleneck. |
format | Online Article Text |
id | pubmed-3866632 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-38666322013-12-20 Volumetric CT-based segmentation of NSCLC using 3D-Slicer Velazquez, Emmanuel Rios Parmar, Chintan Jermoumi, Mohammed Mak, Raymond H. van Baardwijk, Angela Fennessy, Fiona M. Lewis, John H. De Ruysscher, Dirk Kikinis, Ron Lambin, Philippe Aerts, Hugo J. W. L. Sci Rep Article Accurate volumetric assessment in non-small cell lung cancer (NSCLC) is critical for adequately informing treatments. In this study we assessed the clinical relevance of a semiautomatic computed tomography (CT)-based segmentation method using the competitive region-growing based algorithm, implemented in the free and public available 3D-Slicer software platform. We compared the 3D-Slicer segmented volumes by three independent observers, who segmented the primary tumour of 20 NSCLC patients twice, to manual slice-by-slice delineations of five physicians. Furthermore, we compared all tumour contours to the macroscopic diameter of the tumour in pathology, considered as the “gold standard”. The 3D-Slicer segmented volumes demonstrated high agreement (overlap fractions > 0.90), lower volume variability (p = 0.0003) and smaller uncertainty areas (p = 0.0002), compared to manual slice-by-slice delineations. Furthermore, 3D-Slicer segmentations showed a strong correlation to pathology (r = 0.89, 95%CI, 0.81–0.94). Our results show that semiautomatic 3D-Slicer segmentations can be used for accurate contouring and are more stable than manual delineations. Therefore, 3D-Slicer can be employed as a starting point for treatment decisions or for high-throughput data mining research, such as Radiomics, where manual delineating often represent a time-consuming bottleneck. Nature Publishing Group 2013-12-18 /pmc/articles/PMC3866632/ /pubmed/24346241 http://dx.doi.org/10.1038/srep03529 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Article Velazquez, Emmanuel Rios Parmar, Chintan Jermoumi, Mohammed Mak, Raymond H. van Baardwijk, Angela Fennessy, Fiona M. Lewis, John H. De Ruysscher, Dirk Kikinis, Ron Lambin, Philippe Aerts, Hugo J. W. L. Volumetric CT-based segmentation of NSCLC using 3D-Slicer |
title | Volumetric CT-based segmentation of NSCLC using 3D-Slicer |
title_full | Volumetric CT-based segmentation of NSCLC using 3D-Slicer |
title_fullStr | Volumetric CT-based segmentation of NSCLC using 3D-Slicer |
title_full_unstemmed | Volumetric CT-based segmentation of NSCLC using 3D-Slicer |
title_short | Volumetric CT-based segmentation of NSCLC using 3D-Slicer |
title_sort | volumetric ct-based segmentation of nsclc using 3d-slicer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866632/ https://www.ncbi.nlm.nih.gov/pubmed/24346241 http://dx.doi.org/10.1038/srep03529 |
work_keys_str_mv | AT velazquezemmanuelrios volumetricctbasedsegmentationofnsclcusing3dslicer AT parmarchintan volumetricctbasedsegmentationofnsclcusing3dslicer AT jermoumimohammed volumetricctbasedsegmentationofnsclcusing3dslicer AT makraymondh volumetricctbasedsegmentationofnsclcusing3dslicer AT vanbaardwijkangela volumetricctbasedsegmentationofnsclcusing3dslicer AT fennessyfionam volumetricctbasedsegmentationofnsclcusing3dslicer AT lewisjohnh volumetricctbasedsegmentationofnsclcusing3dslicer AT deruysscherdirk volumetricctbasedsegmentationofnsclcusing3dslicer AT kikinisron volumetricctbasedsegmentationofnsclcusing3dslicer AT lambinphilippe volumetricctbasedsegmentationofnsclcusing3dslicer AT aertshugojwl volumetricctbasedsegmentationofnsclcusing3dslicer |