Cargando…

Volumetric CT-based segmentation of NSCLC using 3D-Slicer

Accurate volumetric assessment in non-small cell lung cancer (NSCLC) is critical for adequately informing treatments. In this study we assessed the clinical relevance of a semiautomatic computed tomography (CT)-based segmentation method using the competitive region-growing based algorithm, implement...

Descripción completa

Detalles Bibliográficos
Autores principales: Velazquez, Emmanuel Rios, Parmar, Chintan, Jermoumi, Mohammed, Mak, Raymond H., van Baardwijk, Angela, Fennessy, Fiona M., Lewis, John H., De Ruysscher, Dirk, Kikinis, Ron, Lambin, Philippe, Aerts, Hugo J. W. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866632/
https://www.ncbi.nlm.nih.gov/pubmed/24346241
http://dx.doi.org/10.1038/srep03529
_version_ 1782296193988034560
author Velazquez, Emmanuel Rios
Parmar, Chintan
Jermoumi, Mohammed
Mak, Raymond H.
van Baardwijk, Angela
Fennessy, Fiona M.
Lewis, John H.
De Ruysscher, Dirk
Kikinis, Ron
Lambin, Philippe
Aerts, Hugo J. W. L.
author_facet Velazquez, Emmanuel Rios
Parmar, Chintan
Jermoumi, Mohammed
Mak, Raymond H.
van Baardwijk, Angela
Fennessy, Fiona M.
Lewis, John H.
De Ruysscher, Dirk
Kikinis, Ron
Lambin, Philippe
Aerts, Hugo J. W. L.
author_sort Velazquez, Emmanuel Rios
collection PubMed
description Accurate volumetric assessment in non-small cell lung cancer (NSCLC) is critical for adequately informing treatments. In this study we assessed the clinical relevance of a semiautomatic computed tomography (CT)-based segmentation method using the competitive region-growing based algorithm, implemented in the free and public available 3D-Slicer software platform. We compared the 3D-Slicer segmented volumes by three independent observers, who segmented the primary tumour of 20 NSCLC patients twice, to manual slice-by-slice delineations of five physicians. Furthermore, we compared all tumour contours to the macroscopic diameter of the tumour in pathology, considered as the “gold standard”. The 3D-Slicer segmented volumes demonstrated high agreement (overlap fractions > 0.90), lower volume variability (p = 0.0003) and smaller uncertainty areas (p = 0.0002), compared to manual slice-by-slice delineations. Furthermore, 3D-Slicer segmentations showed a strong correlation to pathology (r = 0.89, 95%CI, 0.81–0.94). Our results show that semiautomatic 3D-Slicer segmentations can be used for accurate contouring and are more stable than manual delineations. Therefore, 3D-Slicer can be employed as a starting point for treatment decisions or for high-throughput data mining research, such as Radiomics, where manual delineating often represent a time-consuming bottleneck.
format Online
Article
Text
id pubmed-3866632
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-38666322013-12-20 Volumetric CT-based segmentation of NSCLC using 3D-Slicer Velazquez, Emmanuel Rios Parmar, Chintan Jermoumi, Mohammed Mak, Raymond H. van Baardwijk, Angela Fennessy, Fiona M. Lewis, John H. De Ruysscher, Dirk Kikinis, Ron Lambin, Philippe Aerts, Hugo J. W. L. Sci Rep Article Accurate volumetric assessment in non-small cell lung cancer (NSCLC) is critical for adequately informing treatments. In this study we assessed the clinical relevance of a semiautomatic computed tomography (CT)-based segmentation method using the competitive region-growing based algorithm, implemented in the free and public available 3D-Slicer software platform. We compared the 3D-Slicer segmented volumes by three independent observers, who segmented the primary tumour of 20 NSCLC patients twice, to manual slice-by-slice delineations of five physicians. Furthermore, we compared all tumour contours to the macroscopic diameter of the tumour in pathology, considered as the “gold standard”. The 3D-Slicer segmented volumes demonstrated high agreement (overlap fractions > 0.90), lower volume variability (p = 0.0003) and smaller uncertainty areas (p = 0.0002), compared to manual slice-by-slice delineations. Furthermore, 3D-Slicer segmentations showed a strong correlation to pathology (r = 0.89, 95%CI, 0.81–0.94). Our results show that semiautomatic 3D-Slicer segmentations can be used for accurate contouring and are more stable than manual delineations. Therefore, 3D-Slicer can be employed as a starting point for treatment decisions or for high-throughput data mining research, such as Radiomics, where manual delineating often represent a time-consuming bottleneck. Nature Publishing Group 2013-12-18 /pmc/articles/PMC3866632/ /pubmed/24346241 http://dx.doi.org/10.1038/srep03529 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Article
Velazquez, Emmanuel Rios
Parmar, Chintan
Jermoumi, Mohammed
Mak, Raymond H.
van Baardwijk, Angela
Fennessy, Fiona M.
Lewis, John H.
De Ruysscher, Dirk
Kikinis, Ron
Lambin, Philippe
Aerts, Hugo J. W. L.
Volumetric CT-based segmentation of NSCLC using 3D-Slicer
title Volumetric CT-based segmentation of NSCLC using 3D-Slicer
title_full Volumetric CT-based segmentation of NSCLC using 3D-Slicer
title_fullStr Volumetric CT-based segmentation of NSCLC using 3D-Slicer
title_full_unstemmed Volumetric CT-based segmentation of NSCLC using 3D-Slicer
title_short Volumetric CT-based segmentation of NSCLC using 3D-Slicer
title_sort volumetric ct-based segmentation of nsclc using 3d-slicer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866632/
https://www.ncbi.nlm.nih.gov/pubmed/24346241
http://dx.doi.org/10.1038/srep03529
work_keys_str_mv AT velazquezemmanuelrios volumetricctbasedsegmentationofnsclcusing3dslicer
AT parmarchintan volumetricctbasedsegmentationofnsclcusing3dslicer
AT jermoumimohammed volumetricctbasedsegmentationofnsclcusing3dslicer
AT makraymondh volumetricctbasedsegmentationofnsclcusing3dslicer
AT vanbaardwijkangela volumetricctbasedsegmentationofnsclcusing3dslicer
AT fennessyfionam volumetricctbasedsegmentationofnsclcusing3dslicer
AT lewisjohnh volumetricctbasedsegmentationofnsclcusing3dslicer
AT deruysscherdirk volumetricctbasedsegmentationofnsclcusing3dslicer
AT kikinisron volumetricctbasedsegmentationofnsclcusing3dslicer
AT lambinphilippe volumetricctbasedsegmentationofnsclcusing3dslicer
AT aertshugojwl volumetricctbasedsegmentationofnsclcusing3dslicer