Cargando…

The C-terminal extension of Lsm4 interacts directly with the 3′ end of the histone mRNP and is required for efficient histone mRNA degradation

Metazoan replication-dependent histone mRNAs are the only known eukaryotic mRNAs that lack a poly(A) tail, ending instead in a conserved stem–loop sequence, which is bound to the stem–loop binding protein (SLBP) on the histone mRNP. Histone mRNAs are rapidly degraded when DNA synthesis is inhibited...

Descripción completa

Detalles Bibliográficos
Autores principales: Lyons, Shawn M., Ricciardi, Adele S., Guo, Andrew Y., Kambach, Christian, Marzluff, William F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866647/
https://www.ncbi.nlm.nih.gov/pubmed/24255165
http://dx.doi.org/10.1261/rna.042531.113
Descripción
Sumario:Metazoan replication-dependent histone mRNAs are the only known eukaryotic mRNAs that lack a poly(A) tail, ending instead in a conserved stem–loop sequence, which is bound to the stem–loop binding protein (SLBP) on the histone mRNP. Histone mRNAs are rapidly degraded when DNA synthesis is inhibited in S phase in mammalian cells. Rapid degradation of histone mRNAs is initiated by oligouridylation of the 3′ end of histone mRNAs and requires the cytoplasmic Lsm1-7 complex, which can bind to the oligo(U) tail. An exonuclease, 3′hExo, forms a ternary complex with SLBP and the stem–loop and is required for the initiation of histone mRNA degradation. The Lsm1-7 complex is also involved in degradation of polyadenylated mRNAs. It binds to the oligo(A) tail remaining after deadenylation, inhibiting translation and recruiting the enzymes required for decapping. Whether the Lsm1-7 complex interacts directly with other components of the mRNP is not known. We report here that the C-terminal extension of Lsm4 interacts directly with the histone mRNP, contacting both SLBP and 3′hExo. Mutants in the C-terminal tail of Lsm4 that prevent SLBP and 3′hExo binding reduce the rate of histone mRNA degradation when DNA synthesis is inhibited.