Cargando…
Modified Logistic Regression Models Using Gene Coexpression and Clinical Features to Predict Prostate Cancer Progression
Predicting disease progression is one of the most challenging problems in prostate cancer research. Adding gene expression data to prediction models that are based on clinical features has been proposed to improve accuracy. In the current study, we applied a logistic regression (LR) model combining...
Autores principales: | Zhao, Hongya, Logothetis, Christopher J., Gorlov, Ivan P., Zeng, Jia, Dai, Jianguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866878/ https://www.ncbi.nlm.nih.gov/pubmed/24367394 http://dx.doi.org/10.1155/2013/917502 |
Ejemplares similares
-
Genetic algorithm with logistic regression for prediction of progression to Alzheimer's disease
por: Johnson, Piers, et al.
Publicado: (2014) -
Prioritizing genes associated with prostate cancer development
por: Gorlov, Ivan P, et al.
Publicado: (2010) -
Accurate diagnosis of prostate cancer using logistic regression
por: Hooshmand, Arash
Publicado: (2021) -
Comprehensible Predictive Modeling Using Regularized Logistic Regression and Comorbidity Based Features
por: Stiglic, Gregor, et al.
Publicado: (2015) -
GWAS Meets Microarray: Are the Results of Genome-Wide Association Studies and Gene-Expression Profiling Consistent? Prostate Cancer as an Example
por: Gorlov, Ivan P., et al.
Publicado: (2009)