Cargando…
The influence of type-I and type-II triplet multiple quantum well structure on white organic light-emitting diodes
We demonstrate high-efficient white organic light-emitting diodes (WOLEDs) based on triplet multiple quantum well (MQW) structure and focus on the influence on WOLEDs through employing different potential barrier materials to form type-I and type-II MQWs, respectively. It is found that type-I MQW st...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867217/ https://www.ncbi.nlm.nih.gov/pubmed/24341599 http://dx.doi.org/10.1186/1556-276X-8-529 |
Sumario: | We demonstrate high-efficient white organic light-emitting diodes (WOLEDs) based on triplet multiple quantum well (MQW) structure and focus on the influence on WOLEDs through employing different potential barrier materials to form type-I and type-II MQWs, respectively. It is found that type-I MQW structure WOLEDs based on 1,3,5-tris(N-phenyl-benzimidazol-2-yl)benzene as potential barrier layer (PBL) offers high electroluminescent (EL) performance. That is to say, maximum current efficiency and power efficiency are achieved at about 1,000 cd/m(2) with 16.4 cd/A and 8.3 lm/W, which increase by 53.3% and 50.9% over traditional three-layer structure WOLEDs, respectively, and a maximum luminance of 17,700 cd/m(2) is earned simultaneously. The achievement of high EL performance would be attributed to uniform distribution and better confinement of carriers within the emitting layer (EML). However, when 4,7-diphenyl-1,10-phenanthroline or 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline is used as PBL to form type-II MQW structure, poor EL performance is obtained. We attribute that to improper energy level alignment between the interface of EML/PBL, which leads to incomplete confinement and low recombination efficiency of carriers, a more detailed mechanism was argued. |
---|