Cargando…

Characterization of Information-Based Learning Benefits with Submovement Dynamics and Muscular Rhythmicity

For skill advancement, motor variability must be optimized based on target information during practice sessions. This study investigated structural changes in kinematic variability by characterizing submovement dynamics and muscular oscillations after practice with visuomotor tracking under differen...

Descripción completa

Detalles Bibliográficos
Autores principales: Hwang, Ing-Shiou, Huang, Chien-Ting, Yang, Jeng-Feng, Guo, Mei-Chun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867443/
https://www.ncbi.nlm.nih.gov/pubmed/24367568
http://dx.doi.org/10.1371/journal.pone.0082920
Descripción
Sumario:For skill advancement, motor variability must be optimized based on target information during practice sessions. This study investigated structural changes in kinematic variability by characterizing submovement dynamics and muscular oscillations after practice with visuomotor tracking under different target conditions. Thirty-six participants were randomly assigned to one of three groups (simple, complex, and random). Each group practiced tracking visual targets with trajectories of varying complexity. The velocity trajectory of tracking was decomposed into 1) a primary contraction spectrally identical to the target rate and 2) an intermittent submovement profile. The learning benefits and submovement dynamics were conditional upon experimental manipulation of the target information. Only the simple and complex groups improved their skills with practice. The size of the submovements was most greatly reduced by practice with the least target information (simple > complex > random). Submovement complexity changed in parallel with learning benefits, with the most remarkable increase in practice under a moderate amount of target information (complex > simple > random). In the simple and complex protocols, skill improvements were associated with a significant decline in alpha (8–12 Hz) muscular oscillation but a potentiation of gamma (35–50 Hz) muscular oscillation. However, the random group showed no significant change in tracking skill or submovement dynamics, except that alpha muscular oscillation was reduced. In conclusion, submovement and gamma muscular oscillation are biological markers of learning benefits. Effective learning with an appropriate amount of target information reduces the size of submovements. In accordance with the challenge point hypothesis, changes in submovement complexity in response to target information had an inverted-U function, pertaining to an abundant trajectory-tuning strategy with target exactness.