Cargando…

Protein interaction network for Alzheimer's disease using computational approach

Alzheimer's disease (AD) is the most common form of dementia. It is the sixth leading cause of death in old age people. Despite recent advances in the field of drug design, the medical treatment for the disease is purely symptomatic and hardly effective. Thus there is a need to understand the m...

Descripción completa

Detalles Bibliográficos
Autores principales: Rao, V Srinivasa, Srinivas, K, Kumar, GN Sunand, Sujin, GN
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867649/
https://www.ncbi.nlm.nih.gov/pubmed/24391359
http://dx.doi.org/10.6026/97320630009968
Descripción
Sumario:Alzheimer's disease (AD) is the most common form of dementia. It is the sixth leading cause of death in old age people. Despite recent advances in the field of drug design, the medical treatment for the disease is purely symptomatic and hardly effective. Thus there is a need to understand the molecular mechanism behind the disease in order to improve the drug aspects of the disease. We provided two contributions in the field of proteomics in drug design. First, we have constructed a protein-protein interaction network for Alzheimer's disease reviewed proteins with 1412 interactions predicted among 969 proteins. Second, the disease proteins were given confidence scores to prioritize and then analyzed for their homology nature with respect to paralogs and homologs. The homology persisted with the mouse giving a basis for drug design phase. The method will create a new drug design technique in the field of bioinformatics by linking drug design process with protein-protein interactions via signal pathways. This method can be improvised for other diseases in future.