Cargando…

Measuring and evaluating morphological asymmetry in fish: distinct lateral dimorphism in the jaws of scale-eating cichlids

The left–right asymmetry of scale-eating Tanganyikan cichlids is described as a unilateral topographical shift of the quadratomandibular joints. This morphological laterality has a genetic basis and has therefore been used as a model for studying negative frequency-dependent selection and the result...

Descripción completa

Detalles Bibliográficos
Autores principales: Hata, Hiroki, Yasugi, Masaki, Takeuchi, Yuichi, Takahashi, Satoshi, Hori, Michio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867900/
https://www.ncbi.nlm.nih.gov/pubmed/24363893
http://dx.doi.org/10.1002/ece3.849
Descripción
Sumario:The left–right asymmetry of scale-eating Tanganyikan cichlids is described as a unilateral topographical shift of the quadratomandibular joints. This morphological laterality has a genetic basis and has therefore been used as a model for studying negative frequency-dependent selection and the resulting oscillation in frequencies of two genotypes, lefty and righty, in a population. This study aims were to confirm this laterality in Perissodus microlepis Boulenger and P. straeleni (Poll) and evaluate an appropriate method for measuring and testing the asymmetry. Left–right differences in the height of the mandible posterior ends (HMPE) and the angle between the neurocranium and vertebrae of P. microlepis and P. straeleni were measured on skeletal specimens. Snout-bending angle was also measured using a dorsal image of the same individuals following a previous method. To define which distribution model, fluctuating asymmetry (FA), directional asymmetry (DA), or antisymmetry (AS), best fit to the lateral asymmetry of the traits, we provided an R package, IASD. As a result, HMPE and neurocranium–vertebrae angle of both species were best fitted to AS, suggesting that P. microlepis and P. straeleni showed a distinct dimorphism in these traits, although snout-bending angle of P. microlepis was best fitted to FA. Measurement error was low for HMPE comparing the snout-bending angle in P. microlepis, indicating that measuring HMPE is a more accurate method. The scale-eating tribe Perissodini showed distinct antisymmetry in the jaw skeleton and neurocranium–vertebrae angle, and this laterality remains a valid marker for further evolutionary studies.