Cargando…
The magnitude of local adaptation under genotype-dependent dispersal
Dispersal moves individuals from patches where their immediate ancestors were successful to sites where their genotypes are untested. As a result, dispersal generally reduces fitness, a phenomenon known as “migration load.” The strength of migration load depends on the pattern of dispersal and can b...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867907/ https://www.ncbi.nlm.nih.gov/pubmed/24363900 http://dx.doi.org/10.1002/ece3.850 |
_version_ | 1782296381232250880 |
---|---|
author | Bolnick, Daniel I Otto, Sarah P |
author_facet | Bolnick, Daniel I Otto, Sarah P |
author_sort | Bolnick, Daniel I |
collection | PubMed |
description | Dispersal moves individuals from patches where their immediate ancestors were successful to sites where their genotypes are untested. As a result, dispersal generally reduces fitness, a phenomenon known as “migration load.” The strength of migration load depends on the pattern of dispersal and can be dramatically lessened or reversed when individuals move preferentially toward patches conferring higher fitness. Evolutionary ecologists have long modeled nonrandom dispersal, focusing primarily on its effects on population density over space, the maintenance of genetic variation, and reproductive isolation. Here, we build upon previous work by calculating how the extent of local adaptation and the migration load are affected when individuals differ in their dispersal rate in a genotype-dependent manner that alters their match to their environment. Examining a one-locus, two-patch model, we show that local adaptation occurs through a combination of natural selection and adaptive dispersal. For a substantial portion of parameter space, adaptive dispersal can be the predominant force generating local adaptation. Furthermore, genetic load may be largely averted with adaptive dispersal whenever individuals move before selective deaths occur. Thus, to understand the mechanisms driving local adaptation, biologists must account for the extent and nature of nonrandom, genotype-dependent dispersal, and the potential for adaptation via spatial sorting of genotypes. |
format | Online Article Text |
id | pubmed-3867907 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-38679072013-12-20 The magnitude of local adaptation under genotype-dependent dispersal Bolnick, Daniel I Otto, Sarah P Ecol Evol Original Research Dispersal moves individuals from patches where their immediate ancestors were successful to sites where their genotypes are untested. As a result, dispersal generally reduces fitness, a phenomenon known as “migration load.” The strength of migration load depends on the pattern of dispersal and can be dramatically lessened or reversed when individuals move preferentially toward patches conferring higher fitness. Evolutionary ecologists have long modeled nonrandom dispersal, focusing primarily on its effects on population density over space, the maintenance of genetic variation, and reproductive isolation. Here, we build upon previous work by calculating how the extent of local adaptation and the migration load are affected when individuals differ in their dispersal rate in a genotype-dependent manner that alters their match to their environment. Examining a one-locus, two-patch model, we show that local adaptation occurs through a combination of natural selection and adaptive dispersal. For a substantial portion of parameter space, adaptive dispersal can be the predominant force generating local adaptation. Furthermore, genetic load may be largely averted with adaptive dispersal whenever individuals move before selective deaths occur. Thus, to understand the mechanisms driving local adaptation, biologists must account for the extent and nature of nonrandom, genotype-dependent dispersal, and the potential for adaptation via spatial sorting of genotypes. Blackwell Publishing Ltd 2013-11 2013-10-30 /pmc/articles/PMC3867907/ /pubmed/24363900 http://dx.doi.org/10.1002/ece3.850 Text en © 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Original Research Bolnick, Daniel I Otto, Sarah P The magnitude of local adaptation under genotype-dependent dispersal |
title | The magnitude of local adaptation under genotype-dependent dispersal |
title_full | The magnitude of local adaptation under genotype-dependent dispersal |
title_fullStr | The magnitude of local adaptation under genotype-dependent dispersal |
title_full_unstemmed | The magnitude of local adaptation under genotype-dependent dispersal |
title_short | The magnitude of local adaptation under genotype-dependent dispersal |
title_sort | magnitude of local adaptation under genotype-dependent dispersal |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867907/ https://www.ncbi.nlm.nih.gov/pubmed/24363900 http://dx.doi.org/10.1002/ece3.850 |
work_keys_str_mv | AT bolnickdanieli themagnitudeoflocaladaptationundergenotypedependentdispersal AT ottosarahp themagnitudeoflocaladaptationundergenotypedependentdispersal AT bolnickdanieli magnitudeoflocaladaptationundergenotypedependentdispersal AT ottosarahp magnitudeoflocaladaptationundergenotypedependentdispersal |