Cargando…
A Novel Multiinstance Learning Approach for Liver Cancer Recognition on Abdominal CT Images Based on CPSO-SVM and IO
A novel multi-instance learning (MIL) method is proposed to recognize liver cancer with abdominal CT images based on instance optimization (IO) and support vector machine with parameters optimized by a combination algorithm of particle swarm optimization and local optimization (CPSO-SVM). Introducin...
Autores principales: | Jiang, Huiyan, Zheng, Ruiping, Yi, Dehui, Zhao, Di |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867923/ https://www.ncbi.nlm.nih.gov/pubmed/24368931 http://dx.doi.org/10.1155/2013/434969 |
Ejemplares similares
-
A Fault Detection Method Based on CPSO-Improved KICA
por: Liu, Mingguang, et al.
Publicado: (2019) -
Construction of Pancreatic Cancer Classifier Based on SVM Optimized by Improved FOA
por: Jiang, Huiyan, et al.
Publicado: (2015) -
Ethical failings of CPSO policy and the health care consent act: case review
por: Landry, Joshua T., et al.
Publicado: (2019) -
CNN-SVM Learning Approach Based Human Activity Recognition
por: Basly, Hend, et al.
Publicado: (2020) -
Target Recognition of SAR Images Based on SVM and KSRC
por: Zhao, Haiyan
Publicado: (2021)