Cargando…

Regulation of Cu-Zn superoxide dismutase on SCN2A in SH-SY5Y cells as a potential therapy for temporal lobe epilepsy

In order to evaluate SCN2A as a candidate gene for epileptic susceptibility and the use of a Cu-Zn superoxide dismutase (SOD) supplement as a potential therapy for epilepsy, SCN2A expression in the cortex and the correlation between SCN2A and Cu-Zn SOD in SH-SY5Y cells were examined. SCN2A expressio...

Descripción completa

Detalles Bibliográficos
Autores principales: XIANG, JUN, JIANG, YUGANG
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868489/
https://www.ncbi.nlm.nih.gov/pubmed/24220630
http://dx.doi.org/10.3892/mmr.2013.1790
Descripción
Sumario:In order to evaluate SCN2A as a candidate gene for epileptic susceptibility and the use of a Cu-Zn superoxide dismutase (SOD) supplement as a potential therapy for epilepsy, SCN2A expression in the cortex and the correlation between SCN2A and Cu-Zn SOD in SH-SY5Y cells were examined. SCN2A expression and the concentration of Cu-Zn SOD in the cerebral cortexes of patients with primary and secondary temporal lobe epilepsy and normal brain cortex tissues were detected. By transfecting SH-SY5Y cells, the expression of SCN2A and the concentration of Cu-Zn SOD was analyzed and the single-cell patch clamp technique was employed in order to investigate the changes in sodium ion levels following SCN2A knockdown. SCN2A level restoration was also investigated with a Cu-Zn SOD supplement using an expression study and evaluated the changes in sodium ion levels following SCN2A knockdown. SCN2A expression and Cu-Zn SOD concentration decreased in the epileptic cerebral cortex. Following SCN2A knockdown, the concentration of Cu-Zn SOD declined and the si-SCN2A vector group showed a repeated discharge. Furthermore, the Cu-Zn SOD concentration was capable of restoring the expression of SCN2A following SCN2A knockdown in SH-SY5Y cells and the overexpression of Cu-Zn SOD prevented the repeated discharge caused by si-SCN2A. The results indicated that there is a low expression of SCN2A and Cu-Zn SOD in the epileptic cerebral cortex and provided novel insights into potential therapies for temporal lobe epilepsy.