Cargando…
Perturbation Biology: Inferring Signaling Networks in Cellular Systems
We present a powerful experimental-computational technology for inferring network models that predict the response of cells to perturbations, and that may be useful in the design of combinatorial therapy against cancer. The experiments are systematic series of perturbations of cancer cell lines by t...
Autores principales: | Molinelli, Evan J., Korkut, Anil, Wang, Weiqing, Miller, Martin L., Gauthier, Nicholas P., Jing, Xiaohong, Kaushik, Poorvi, He, Qin, Mills, Gordon, Solit, David B., Pratilas, Christine A., Weigt, Martin, Braunstein, Alfredo, Pagnani, Andrea, Zecchina, Riccardo, Sander, Chris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868523/ https://www.ncbi.nlm.nih.gov/pubmed/24367245 http://dx.doi.org/10.1371/journal.pcbi.1003290 |
Ejemplares similares
-
Inference of sparse combinatorial-control networks from gene-expression data: a message passing approach
por: Bailly-Bechet, Marc, et al.
Publicado: (2010) -
Perturbation biology nominates upstream–downstream drug combinations in RAF inhibitor resistant melanoma cells
por: Korkut, Anil, et al.
Publicado: (2015) -
Spatial Normalization of Reverse Phase Protein Array Data
por: Kaushik, Poorvi, et al.
Publicado: (2014) -
Fast and Accurate Multivariate Gaussian Modeling of Protein Families: Predicting Residue Contacts and Protein-Interaction Partners
por: Baldassi, Carlo, et al.
Publicado: (2014) -
Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition
por: Alemi-Neissi, Alireza, et al.
Publicado: (2012)