Acid-base transport in pancreas—new challenges

Along the gastrointestinal tract a number of epithelia contribute with acid or basic secretions in order to aid digestive processes. The stomach and pancreas are the most extreme examples of acid (H(+)) and base (HCO(−)(3)) transporters, respectively. Nevertheless, they share the same challenges of...

Descripción completa

Detalles Bibliográficos
Autores principales: Novak, Ivana, Haanes, Kristian A., Wang, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868914/
https://www.ncbi.nlm.nih.gov/pubmed/24391597
http://dx.doi.org/10.3389/fphys.2013.00380
Descripción
Sumario:Along the gastrointestinal tract a number of epithelia contribute with acid or basic secretions in order to aid digestive processes. The stomach and pancreas are the most extreme examples of acid (H(+)) and base (HCO(−)(3)) transporters, respectively. Nevertheless, they share the same challenges of transporting acid and bases across epithelia and effectively regulating their intracellular pH. In this review, we will make use of comparative physiology to enlighten the cellular mechanisms of pancreatic HCO(−)(3) and fluid secretion, which is still challenging physiologists. Some of the novel transporters to consider in pancreas are the proton pumps (H(+)-K(+)-ATPases), as well as the calcium-activated K(+) and Cl(−) channels, such as K(Ca)3.1 and TMEM16A/ANO1. Local regulators, such as purinergic signaling, fine-tune, and coordinate pancreatic secretion. Lastly, we speculate whether dys-regulation of acid-base transport contributes to pancreatic diseases including cystic fibrosis, pancreatitis, and cancer.