Cargando…
Lampreys Have a Single Gene Cluster for the Fast Skeletal Myosin Heavy Chain Gene Family
Muscle tissues contain the most classic sarcomeric myosin, called myosin II, which consists of 2 heavy chains (MYHs) and 4 light chains. In the case of humans (tetrapod), a total of 6 fast skeletal-type MYH genes (MYHs) are clustered on a single chromosome. In contrast, torafugu (teleost) contains a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869912/ https://www.ncbi.nlm.nih.gov/pubmed/24376886 http://dx.doi.org/10.1371/journal.pone.0085500 |
_version_ | 1782296635203649536 |
---|---|
author | Ikeda, Daisuke Ono, Yosuke Hirano, Shigeki Kan-no, Nobuhiro Watabe, Shugo |
author_facet | Ikeda, Daisuke Ono, Yosuke Hirano, Shigeki Kan-no, Nobuhiro Watabe, Shugo |
author_sort | Ikeda, Daisuke |
collection | PubMed |
description | Muscle tissues contain the most classic sarcomeric myosin, called myosin II, which consists of 2 heavy chains (MYHs) and 4 light chains. In the case of humans (tetrapod), a total of 6 fast skeletal-type MYH genes (MYHs) are clustered on a single chromosome. In contrast, torafugu (teleost) contains at least 13 fast skeletal MYHs, which are distributed in 5 genomic regions; the MYHs are clustered in 3 of these regions. In the present study, the evolutionary relationship among fast skeletal MYHs is elucidated by comparing the MYHs of teleosts and tetrapods with those of cyclostome lampreys, one of two groups of extant jawless vertebrates (agnathans). We found that lampreys contain at least 3 fast skeletal MYHs, which are clustered in a head-to-tail manner in a single genomic region. Although there was apparent synteny in the corresponding MYH cluster regions between lampreys and tetrapods, phylogenetic analysis indicated that lamprey and tetrapod MYHs have independently duplicated and diversified. Subsequent transgenic approaches showed that the 5′-flanking sequences of Japanese lamprey fast skeletal MYHs function as a regulatory sequence to drive specific reporter gene expression in the fast skeletal muscle of zebrafish embryos. Although zebrafish MYH promoters showed apparent activity to direct reporter gene expression in myogenic cells derived from mice, promoters from Japanese lamprey MYHs had no activity. These results suggest that the muscle-specific regulatory mechanisms are partially conserved between teleosts and tetrapods but not between cyclostomes and tetrapods, despite the conserved synteny. |
format | Online Article Text |
id | pubmed-3869912 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38699122013-12-27 Lampreys Have a Single Gene Cluster for the Fast Skeletal Myosin Heavy Chain Gene Family Ikeda, Daisuke Ono, Yosuke Hirano, Shigeki Kan-no, Nobuhiro Watabe, Shugo PLoS One Research Article Muscle tissues contain the most classic sarcomeric myosin, called myosin II, which consists of 2 heavy chains (MYHs) and 4 light chains. In the case of humans (tetrapod), a total of 6 fast skeletal-type MYH genes (MYHs) are clustered on a single chromosome. In contrast, torafugu (teleost) contains at least 13 fast skeletal MYHs, which are distributed in 5 genomic regions; the MYHs are clustered in 3 of these regions. In the present study, the evolutionary relationship among fast skeletal MYHs is elucidated by comparing the MYHs of teleosts and tetrapods with those of cyclostome lampreys, one of two groups of extant jawless vertebrates (agnathans). We found that lampreys contain at least 3 fast skeletal MYHs, which are clustered in a head-to-tail manner in a single genomic region. Although there was apparent synteny in the corresponding MYH cluster regions between lampreys and tetrapods, phylogenetic analysis indicated that lamprey and tetrapod MYHs have independently duplicated and diversified. Subsequent transgenic approaches showed that the 5′-flanking sequences of Japanese lamprey fast skeletal MYHs function as a regulatory sequence to drive specific reporter gene expression in the fast skeletal muscle of zebrafish embryos. Although zebrafish MYH promoters showed apparent activity to direct reporter gene expression in myogenic cells derived from mice, promoters from Japanese lamprey MYHs had no activity. These results suggest that the muscle-specific regulatory mechanisms are partially conserved between teleosts and tetrapods but not between cyclostomes and tetrapods, despite the conserved synteny. Public Library of Science 2013-12-20 /pmc/articles/PMC3869912/ /pubmed/24376886 http://dx.doi.org/10.1371/journal.pone.0085500 Text en © 2013 Ikeda et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ikeda, Daisuke Ono, Yosuke Hirano, Shigeki Kan-no, Nobuhiro Watabe, Shugo Lampreys Have a Single Gene Cluster for the Fast Skeletal Myosin Heavy Chain Gene Family |
title | Lampreys Have a Single Gene Cluster for the Fast Skeletal Myosin Heavy Chain Gene Family |
title_full | Lampreys Have a Single Gene Cluster for the Fast Skeletal Myosin Heavy Chain Gene Family |
title_fullStr | Lampreys Have a Single Gene Cluster for the Fast Skeletal Myosin Heavy Chain Gene Family |
title_full_unstemmed | Lampreys Have a Single Gene Cluster for the Fast Skeletal Myosin Heavy Chain Gene Family |
title_short | Lampreys Have a Single Gene Cluster for the Fast Skeletal Myosin Heavy Chain Gene Family |
title_sort | lampreys have a single gene cluster for the fast skeletal myosin heavy chain gene family |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869912/ https://www.ncbi.nlm.nih.gov/pubmed/24376886 http://dx.doi.org/10.1371/journal.pone.0085500 |
work_keys_str_mv | AT ikedadaisuke lampreyshaveasinglegeneclusterforthefastskeletalmyosinheavychaingenefamily AT onoyosuke lampreyshaveasinglegeneclusterforthefastskeletalmyosinheavychaingenefamily AT hiranoshigeki lampreyshaveasinglegeneclusterforthefastskeletalmyosinheavychaingenefamily AT kannonobuhiro lampreyshaveasinglegeneclusterforthefastskeletalmyosinheavychaingenefamily AT watabeshugo lampreyshaveasinglegeneclusterforthefastskeletalmyosinheavychaingenefamily |