Cargando…
Efficient Architecture for Spike Sorting in Reconfigurable Hardware
This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA) and fuzzy C-means (FCM) algorithm are used for feature extraction and clustering, respectively...
Autores principales: | Hwang, Wen-Jyi, Lee, Wei-Hao, Lin, Shiow-Jyu, Lai, Sheng-Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869989/ https://www.ncbi.nlm.nih.gov/pubmed/24189331 http://dx.doi.org/10.3390/s131114860 |
Ejemplares similares
-
An Efficient Hardware Circuit for Spike Sorting Based on Competitive Learning Networks
por: Chen, Huan-Yuan, et al.
Publicado: (2017) -
An Efficient VLSI Architecture for Multi-Channel Spike Sorting Using a Generalized Hebbian Algorithm
por: Chen, Ying-Lun, et al.
Publicado: (2015) -
FPGA Implementation of Generalized Hebbian Algorithm for Texture Classification
por: Lin, Shiow-Jyu, et al.
Publicado: (2012) -
A Low Cost VLSI Architecture for Spike Sorting Based on Feature Extraction with Peak Search
por: Chang, Yuan-Jyun, et al.
Publicado: (2016) -
Efficient k-Winner-Take-All Competitive Learning Hardware Architecture for On-Chip Learning
por: Ou, Chien-Min, et al.
Publicado: (2012)