Cargando…
The Effects of Lactose, Microcrystalline Cellulose and Dicalcium Phosphate on Swelling and Erosion of Compressed HPMC Matrix Tablets: Texture Analyzer
This paper reviews the use of texture analysis in studying the performance of hydrophilic matrices of highly soluble drugs and different types of excipients (i.e. water-soluble, water-insoluble and swellable, and water insoluble and non-swellable). Tablets were prepared by direct compression, and th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shaheed Beheshti University of Medical Sciences
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870058/ https://www.ncbi.nlm.nih.gov/pubmed/24381599 |
_version_ | 1782296651576115200 |
---|---|
author | Namdeo Tukaram, Bendgude Vidaya Rajagopalan, Iyer Sushi Ikumar Shartchandra, Poddar |
author_facet | Namdeo Tukaram, Bendgude Vidaya Rajagopalan, Iyer Sushi Ikumar Shartchandra, Poddar |
author_sort | Namdeo Tukaram, Bendgude |
collection | PubMed |
description | This paper reviews the use of texture analysis in studying the performance of hydrophilic matrices of highly soluble drugs and different types of excipients (i.e. water-soluble, water-insoluble and swellable, and water insoluble and non-swellable). Tablets were prepared by direct compression, and their swelling and erosion in presence of these different excipients were assessed with the help of volumetric, gravimetric, morphological, and rheological studies. Dissolution test was performed using USP 26 apparatus 2 modified by insertion of a sieve to prevent sticking of the tablets to the bottom of the vessel and allow them to swell 3-dimensionally. Loading 15% of the highly soluble drug in formulations containing 65% lactose showed the most pronounced swelling and erosion and the best sustained drug release, compared to matrices containing microcrystalline cellulose and dicalcium phosphate. The correlation between front movement, mass erosion and solute transport in relation to excipient type on progression of probe displacement and total work was examined throughout texture analysis studies. The formulation containing the soluble excipient lactose showed better swelling and erosion properties compared to formulations containing the swellable and insoluble excipients. In conclusion, it could be said that based on the distinct conventional dosage forms insertion of particular excipients in hydrophilic controlled release tablets containing water soluble drug, the finger print information of drug release profile could be obtained. To study the release profile from hydroxy propyl methyl cellulose K 15M matrices with different types of excpients, diltiazem hydrochloride was used as a model soluble drug. |
format | Online Article Text |
id | pubmed-3870058 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Shaheed Beheshti University of Medical Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-38700582013-12-31 The Effects of Lactose, Microcrystalline Cellulose and Dicalcium Phosphate on Swelling and Erosion of Compressed HPMC Matrix Tablets: Texture Analyzer Namdeo Tukaram, Bendgude Vidaya Rajagopalan, Iyer Sushi Ikumar Shartchandra, Poddar Iran J Pharm Res Original Article This paper reviews the use of texture analysis in studying the performance of hydrophilic matrices of highly soluble drugs and different types of excipients (i.e. water-soluble, water-insoluble and swellable, and water insoluble and non-swellable). Tablets were prepared by direct compression, and their swelling and erosion in presence of these different excipients were assessed with the help of volumetric, gravimetric, morphological, and rheological studies. Dissolution test was performed using USP 26 apparatus 2 modified by insertion of a sieve to prevent sticking of the tablets to the bottom of the vessel and allow them to swell 3-dimensionally. Loading 15% of the highly soluble drug in formulations containing 65% lactose showed the most pronounced swelling and erosion and the best sustained drug release, compared to matrices containing microcrystalline cellulose and dicalcium phosphate. The correlation between front movement, mass erosion and solute transport in relation to excipient type on progression of probe displacement and total work was examined throughout texture analysis studies. The formulation containing the soluble excipient lactose showed better swelling and erosion properties compared to formulations containing the swellable and insoluble excipients. In conclusion, it could be said that based on the distinct conventional dosage forms insertion of particular excipients in hydrophilic controlled release tablets containing water soluble drug, the finger print information of drug release profile could be obtained. To study the release profile from hydroxy propyl methyl cellulose K 15M matrices with different types of excpients, diltiazem hydrochloride was used as a model soluble drug. Shaheed Beheshti University of Medical Sciences 2010 /pmc/articles/PMC3870058/ /pubmed/24381599 Text en © 2010 by School of Pharmacy, Shaheed Beheshti University of Medical Sciences and Health Services This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Namdeo Tukaram, Bendgude Vidaya Rajagopalan, Iyer Sushi Ikumar Shartchandra, Poddar The Effects of Lactose, Microcrystalline Cellulose and Dicalcium Phosphate on Swelling and Erosion of Compressed HPMC Matrix Tablets: Texture Analyzer |
title | The Effects of Lactose, Microcrystalline Cellulose and Dicalcium Phosphate on Swelling and Erosion of Compressed HPMC Matrix Tablets: Texture Analyzer |
title_full | The Effects of Lactose, Microcrystalline Cellulose and Dicalcium Phosphate on Swelling and Erosion of Compressed HPMC Matrix Tablets: Texture Analyzer |
title_fullStr | The Effects of Lactose, Microcrystalline Cellulose and Dicalcium Phosphate on Swelling and Erosion of Compressed HPMC Matrix Tablets: Texture Analyzer |
title_full_unstemmed | The Effects of Lactose, Microcrystalline Cellulose and Dicalcium Phosphate on Swelling and Erosion of Compressed HPMC Matrix Tablets: Texture Analyzer |
title_short | The Effects of Lactose, Microcrystalline Cellulose and Dicalcium Phosphate on Swelling and Erosion of Compressed HPMC Matrix Tablets: Texture Analyzer |
title_sort | effects of lactose, microcrystalline cellulose and dicalcium phosphate on swelling and erosion of compressed hpmc matrix tablets: texture analyzer |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870058/ https://www.ncbi.nlm.nih.gov/pubmed/24381599 |
work_keys_str_mv | AT namdeotukarambendgude theeffectsoflactosemicrocrystallinecelluloseanddicalciumphosphateonswellinganderosionofcompressedhpmcmatrixtabletstextureanalyzer AT vidayarajagopalaniyer theeffectsoflactosemicrocrystallinecelluloseanddicalciumphosphateonswellinganderosionofcompressedhpmcmatrixtabletstextureanalyzer AT sushiikumarshartchandrapoddar theeffectsoflactosemicrocrystallinecelluloseanddicalciumphosphateonswellinganderosionofcompressedhpmcmatrixtabletstextureanalyzer AT namdeotukarambendgude effectsoflactosemicrocrystallinecelluloseanddicalciumphosphateonswellinganderosionofcompressedhpmcmatrixtabletstextureanalyzer AT vidayarajagopalaniyer effectsoflactosemicrocrystallinecelluloseanddicalciumphosphateonswellinganderosionofcompressedhpmcmatrixtabletstextureanalyzer AT sushiikumarshartchandrapoddar effectsoflactosemicrocrystallinecelluloseanddicalciumphosphateonswellinganderosionofcompressedhpmcmatrixtabletstextureanalyzer |