Cargando…
Preparation and In-vitro Evaluation of Controlled Release PLGA Microparticles Containing Triptoreline
Triptoreline is a potent agonist of luteinizing hormone-releasing hormone, currently used in the treatment of prostatic cancer where therapy may be required over months or years. Frequent injection of drug decreases patients’ compliance. The present study describes the formulation of a sustained rel...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shaheed Beheshti University of Medical Sciences
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870060/ https://www.ncbi.nlm.nih.gov/pubmed/24381601 |
_version_ | 1782296652031197184 |
---|---|
author | Mahboubian, Alireza Hashemein, Seyyed Kazem Moghadam, Shadi Atyabi, Fatemeh Dinarvand, Rassoul |
author_facet | Mahboubian, Alireza Hashemein, Seyyed Kazem Moghadam, Shadi Atyabi, Fatemeh Dinarvand, Rassoul |
author_sort | Mahboubian, Alireza |
collection | PubMed |
description | Triptoreline is a potent agonist of luteinizing hormone-releasing hormone, currently used in the treatment of prostatic cancer where therapy may be required over months or years. Frequent injection of drug decreases patients’ compliance. The present study describes the formulation of a sustained release microparticulate drug delivery system containing triptoreline acetate, using poly (D,L lactide-co-glycolide) (PLGA). Biodegradable microspheres were prepared using 50 : 50 PLGA by a water in-oil-in-water (w/o/w) double emulsion-solvent evaporation procedure and characterized for drug content and drug release rate using the a HPLC method, particle size distribution using the laser diffraction method, and surface morphology using scanning electron microscopy and drug release rate. Effect of critical process parameters and formulation variables; i.e. volume of inner water phase, addition of NaCl to the outer aqueous phase (W2), addition of different types and amounts of emulsifying agents on microsphere characteristics; were investigated. Microspheres prepared were spherical with a smooth surface, but addition of poloxamer to the first emulsion produced microspheres with large pores. Size of microparticles was dependent on the type, as well as the amount of co-encapsulated surfactants. Increasing the inner water phase volume resulted in larger particles with a lower encapsulation efficiency. Low concentrations of Span 20 decreased triptoreline release rate, whereas the addition of poloxamer or high concentrations of Span 20 increased the drug release rateit. In conclusion, by selecting an appropriate level of the investigated parameters, spherical microparticles with encapsulation efficiencies higher than 90% and a prolonged triptoreline release over 45 days were obtained. |
format | Online Article Text |
id | pubmed-3870060 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Shaheed Beheshti University of Medical Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-38700602013-12-31 Preparation and In-vitro Evaluation of Controlled Release PLGA Microparticles Containing Triptoreline Mahboubian, Alireza Hashemein, Seyyed Kazem Moghadam, Shadi Atyabi, Fatemeh Dinarvand, Rassoul Iran J Pharm Res Original Article Triptoreline is a potent agonist of luteinizing hormone-releasing hormone, currently used in the treatment of prostatic cancer where therapy may be required over months or years. Frequent injection of drug decreases patients’ compliance. The present study describes the formulation of a sustained release microparticulate drug delivery system containing triptoreline acetate, using poly (D,L lactide-co-glycolide) (PLGA). Biodegradable microspheres were prepared using 50 : 50 PLGA by a water in-oil-in-water (w/o/w) double emulsion-solvent evaporation procedure and characterized for drug content and drug release rate using the a HPLC method, particle size distribution using the laser diffraction method, and surface morphology using scanning electron microscopy and drug release rate. Effect of critical process parameters and formulation variables; i.e. volume of inner water phase, addition of NaCl to the outer aqueous phase (W2), addition of different types and amounts of emulsifying agents on microsphere characteristics; were investigated. Microspheres prepared were spherical with a smooth surface, but addition of poloxamer to the first emulsion produced microspheres with large pores. Size of microparticles was dependent on the type, as well as the amount of co-encapsulated surfactants. Increasing the inner water phase volume resulted in larger particles with a lower encapsulation efficiency. Low concentrations of Span 20 decreased triptoreline release rate, whereas the addition of poloxamer or high concentrations of Span 20 increased the drug release rateit. In conclusion, by selecting an appropriate level of the investigated parameters, spherical microparticles with encapsulation efficiencies higher than 90% and a prolonged triptoreline release over 45 days were obtained. Shaheed Beheshti University of Medical Sciences 2010 /pmc/articles/PMC3870060/ /pubmed/24381601 Text en © 2010 by School of Pharmacy, Shaheed Beheshti University of Medical Sciences and Health Services This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Mahboubian, Alireza Hashemein, Seyyed Kazem Moghadam, Shadi Atyabi, Fatemeh Dinarvand, Rassoul Preparation and In-vitro Evaluation of Controlled Release PLGA Microparticles Containing Triptoreline |
title | Preparation and In-vitro Evaluation of Controlled Release PLGA Microparticles Containing Triptoreline |
title_full | Preparation and In-vitro Evaluation of Controlled Release PLGA Microparticles Containing Triptoreline |
title_fullStr | Preparation and In-vitro Evaluation of Controlled Release PLGA Microparticles Containing Triptoreline |
title_full_unstemmed | Preparation and In-vitro Evaluation of Controlled Release PLGA Microparticles Containing Triptoreline |
title_short | Preparation and In-vitro Evaluation of Controlled Release PLGA Microparticles Containing Triptoreline |
title_sort | preparation and in-vitro evaluation of controlled release plga microparticles containing triptoreline |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870060/ https://www.ncbi.nlm.nih.gov/pubmed/24381601 |
work_keys_str_mv | AT mahboubianalireza preparationandinvitroevaluationofcontrolledreleaseplgamicroparticlescontainingtriptoreline AT hashemeinseyyedkazem preparationandinvitroevaluationofcontrolledreleaseplgamicroparticlescontainingtriptoreline AT moghadamshadi preparationandinvitroevaluationofcontrolledreleaseplgamicroparticlescontainingtriptoreline AT atyabifatemeh preparationandinvitroevaluationofcontrolledreleaseplgamicroparticlescontainingtriptoreline AT dinarvandrassoul preparationandinvitroevaluationofcontrolledreleaseplgamicroparticlescontainingtriptoreline |