Cargando…

The N-Terminal Membrane-Spanning Domain of the Escherichia coli DNA Translocase FtsK Hexamerizes at Midcell

Bacterial FtsK plays a key role in coordinating cell division with the late stages of chromosome segregation. The N-terminal membrane-spanning domain of FtsK is required for cell division, whereas the C-terminal domain is a fast double-stranded DNA (dsDNA) translocase that brings the replication ter...

Descripción completa

Detalles Bibliográficos
Autores principales: Bisicchia, Paola, Steel, Bradley, Mariam Debela, Mekdes H., Löwe, Jan, Sherratt, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Microbiology 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870252/
https://www.ncbi.nlm.nih.gov/pubmed/24302254
http://dx.doi.org/10.1128/mBio.00800-13
_version_ 1782296680986574848
author Bisicchia, Paola
Steel, Bradley
Mariam Debela, Mekdes H.
Löwe, Jan
Sherratt, David
author_facet Bisicchia, Paola
Steel, Bradley
Mariam Debela, Mekdes H.
Löwe, Jan
Sherratt, David
author_sort Bisicchia, Paola
collection PubMed
description Bacterial FtsK plays a key role in coordinating cell division with the late stages of chromosome segregation. The N-terminal membrane-spanning domain of FtsK is required for cell division, whereas the C-terminal domain is a fast double-stranded DNA (dsDNA) translocase that brings the replication termination region of the chromosome to midcell, where it facilitates chromosome unlinking by activating XerCD-dif site-specific recombination. Therefore, FtsK coordinates the late stages of chromosome segregation with cell division. Although the translocase is known to act as a hexamer on DNA, it is unknown when and how hexamers form, as is the number of FtsK molecules in the cell and within the divisome. Using single-molecule live-cell imaging, we show that newborn Escherichia coli cells growing in minimal medium contain ~40 membrane-bound FtsK molecules that are largely monomeric; the numbers increase proportionately with cell growth. After recruitment to the midcell, FtsK is present only as hexamers. Hexamers are observed in all cells and form before any visible sign of cell constriction. An average of 7 FtsK hexamers per cell are present at midcell, with the N-terminal domain being able to hexamerize independently of the translocase. Detergent-solubilized and purified FtsK N-terminal domains readily form hexamers, as determined by in vitro biochemistry, thereby supporting the in vivo data. The hexameric state of the FtsK N-terminal domain at the division site may facilitate assembly of a functional C-terminal DNA translocase on chromosomal DNA.
format Online
Article
Text
id pubmed-3870252
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher American Society of Microbiology
record_format MEDLINE/PubMed
spelling pubmed-38702522013-12-26 The N-Terminal Membrane-Spanning Domain of the Escherichia coli DNA Translocase FtsK Hexamerizes at Midcell Bisicchia, Paola Steel, Bradley Mariam Debela, Mekdes H. Löwe, Jan Sherratt, David mBio Research Article Bacterial FtsK plays a key role in coordinating cell division with the late stages of chromosome segregation. The N-terminal membrane-spanning domain of FtsK is required for cell division, whereas the C-terminal domain is a fast double-stranded DNA (dsDNA) translocase that brings the replication termination region of the chromosome to midcell, where it facilitates chromosome unlinking by activating XerCD-dif site-specific recombination. Therefore, FtsK coordinates the late stages of chromosome segregation with cell division. Although the translocase is known to act as a hexamer on DNA, it is unknown when and how hexamers form, as is the number of FtsK molecules in the cell and within the divisome. Using single-molecule live-cell imaging, we show that newborn Escherichia coli cells growing in minimal medium contain ~40 membrane-bound FtsK molecules that are largely monomeric; the numbers increase proportionately with cell growth. After recruitment to the midcell, FtsK is present only as hexamers. Hexamers are observed in all cells and form before any visible sign of cell constriction. An average of 7 FtsK hexamers per cell are present at midcell, with the N-terminal domain being able to hexamerize independently of the translocase. Detergent-solubilized and purified FtsK N-terminal domains readily form hexamers, as determined by in vitro biochemistry, thereby supporting the in vivo data. The hexameric state of the FtsK N-terminal domain at the division site may facilitate assembly of a functional C-terminal DNA translocase on chromosomal DNA. American Society of Microbiology 2013-12-03 /pmc/articles/PMC3870252/ /pubmed/24302254 http://dx.doi.org/10.1128/mBio.00800-13 Text en Copyright © 2013 Bisicchia et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license (http://creativecommons.org/licenses/by/3.0/) .
spellingShingle Research Article
Bisicchia, Paola
Steel, Bradley
Mariam Debela, Mekdes H.
Löwe, Jan
Sherratt, David
The N-Terminal Membrane-Spanning Domain of the Escherichia coli DNA Translocase FtsK Hexamerizes at Midcell
title The N-Terminal Membrane-Spanning Domain of the Escherichia coli DNA Translocase FtsK Hexamerizes at Midcell
title_full The N-Terminal Membrane-Spanning Domain of the Escherichia coli DNA Translocase FtsK Hexamerizes at Midcell
title_fullStr The N-Terminal Membrane-Spanning Domain of the Escherichia coli DNA Translocase FtsK Hexamerizes at Midcell
title_full_unstemmed The N-Terminal Membrane-Spanning Domain of the Escherichia coli DNA Translocase FtsK Hexamerizes at Midcell
title_short The N-Terminal Membrane-Spanning Domain of the Escherichia coli DNA Translocase FtsK Hexamerizes at Midcell
title_sort n-terminal membrane-spanning domain of the escherichia coli dna translocase ftsk hexamerizes at midcell
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870252/
https://www.ncbi.nlm.nih.gov/pubmed/24302254
http://dx.doi.org/10.1128/mBio.00800-13
work_keys_str_mv AT bisicchiapaola thenterminalmembranespanningdomainoftheescherichiacolidnatranslocaseftskhexamerizesatmidcell
AT steelbradley thenterminalmembranespanningdomainoftheescherichiacolidnatranslocaseftskhexamerizesatmidcell
AT mariamdebelamekdesh thenterminalmembranespanningdomainoftheescherichiacolidnatranslocaseftskhexamerizesatmidcell
AT lowejan thenterminalmembranespanningdomainoftheescherichiacolidnatranslocaseftskhexamerizesatmidcell
AT sherrattdavid thenterminalmembranespanningdomainoftheescherichiacolidnatranslocaseftskhexamerizesatmidcell
AT bisicchiapaola nterminalmembranespanningdomainoftheescherichiacolidnatranslocaseftskhexamerizesatmidcell
AT steelbradley nterminalmembranespanningdomainoftheescherichiacolidnatranslocaseftskhexamerizesatmidcell
AT mariamdebelamekdesh nterminalmembranespanningdomainoftheescherichiacolidnatranslocaseftskhexamerizesatmidcell
AT lowejan nterminalmembranespanningdomainoftheescherichiacolidnatranslocaseftskhexamerizesatmidcell
AT sherrattdavid nterminalmembranespanningdomainoftheescherichiacolidnatranslocaseftskhexamerizesatmidcell