Cargando…

Dissecting the Machinery That Introduces Disulfide Bonds in Pseudomonas aeruginosa

Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed u...

Descripción completa

Detalles Bibliográficos
Autores principales: Arts, Isabelle S., Ball, Geneviève, Leverrier, Pauline, Garvis, Steven, Nicolaes, Valérie, Vertommen, Didier, Ize, Bérengère, Tamu Dufe, Veronica, Messens, Joris, Voulhoux, Romé, Collet, Jean-François
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Microbiology 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870256/
https://www.ncbi.nlm.nih.gov/pubmed/24327342
http://dx.doi.org/10.1128/mBio.00912-13
_version_ 1782296681896738816
author Arts, Isabelle S.
Ball, Geneviève
Leverrier, Pauline
Garvis, Steven
Nicolaes, Valérie
Vertommen, Didier
Ize, Bérengère
Tamu Dufe, Veronica
Messens, Joris
Voulhoux, Romé
Collet, Jean-François
author_facet Arts, Isabelle S.
Ball, Geneviève
Leverrier, Pauline
Garvis, Steven
Nicolaes, Valérie
Vertommen, Didier
Ize, Bérengère
Tamu Dufe, Veronica
Messens, Joris
Voulhoux, Romé
Collet, Jean-François
author_sort Arts, Isabelle S.
collection PubMed
description Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors.
format Online
Article
Text
id pubmed-3870256
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher American Society of Microbiology
record_format MEDLINE/PubMed
spelling pubmed-38702562013-12-26 Dissecting the Machinery That Introduces Disulfide Bonds in Pseudomonas aeruginosa Arts, Isabelle S. Ball, Geneviève Leverrier, Pauline Garvis, Steven Nicolaes, Valérie Vertommen, Didier Ize, Bérengère Tamu Dufe, Veronica Messens, Joris Voulhoux, Romé Collet, Jean-François mBio Research Article Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors. American Society of Microbiology 2013-12-10 /pmc/articles/PMC3870256/ /pubmed/24327342 http://dx.doi.org/10.1128/mBio.00912-13 Text en Copyright © 2013 Arts et al. http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license (http://creativecommons.org/licenses/by-nc-sa/3.0/) , which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Arts, Isabelle S.
Ball, Geneviève
Leverrier, Pauline
Garvis, Steven
Nicolaes, Valérie
Vertommen, Didier
Ize, Bérengère
Tamu Dufe, Veronica
Messens, Joris
Voulhoux, Romé
Collet, Jean-François
Dissecting the Machinery That Introduces Disulfide Bonds in Pseudomonas aeruginosa
title Dissecting the Machinery That Introduces Disulfide Bonds in Pseudomonas aeruginosa
title_full Dissecting the Machinery That Introduces Disulfide Bonds in Pseudomonas aeruginosa
title_fullStr Dissecting the Machinery That Introduces Disulfide Bonds in Pseudomonas aeruginosa
title_full_unstemmed Dissecting the Machinery That Introduces Disulfide Bonds in Pseudomonas aeruginosa
title_short Dissecting the Machinery That Introduces Disulfide Bonds in Pseudomonas aeruginosa
title_sort dissecting the machinery that introduces disulfide bonds in pseudomonas aeruginosa
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870256/
https://www.ncbi.nlm.nih.gov/pubmed/24327342
http://dx.doi.org/10.1128/mBio.00912-13
work_keys_str_mv AT artsisabelles dissectingthemachinerythatintroducesdisulfidebondsinpseudomonasaeruginosa
AT ballgenevieve dissectingthemachinerythatintroducesdisulfidebondsinpseudomonasaeruginosa
AT leverrierpauline dissectingthemachinerythatintroducesdisulfidebondsinpseudomonasaeruginosa
AT garvissteven dissectingthemachinerythatintroducesdisulfidebondsinpseudomonasaeruginosa
AT nicolaesvalerie dissectingthemachinerythatintroducesdisulfidebondsinpseudomonasaeruginosa
AT vertommendidier dissectingthemachinerythatintroducesdisulfidebondsinpseudomonasaeruginosa
AT izeberengere dissectingthemachinerythatintroducesdisulfidebondsinpseudomonasaeruginosa
AT tamudufeveronica dissectingthemachinerythatintroducesdisulfidebondsinpseudomonasaeruginosa
AT messensjoris dissectingthemachinerythatintroducesdisulfidebondsinpseudomonasaeruginosa
AT voulhouxrome dissectingthemachinerythatintroducesdisulfidebondsinpseudomonasaeruginosa
AT colletjeanfrancois dissectingthemachinerythatintroducesdisulfidebondsinpseudomonasaeruginosa