Cargando…
Current composite-feature classification methods do not outperform simple single-genes classifiers in breast cancer prognosis
Integrating gene expression data with secondary data such as pathway or protein-protein interaction data has been proposed as a promising approach for improved outcome prediction of cancer patients. Methods employing this approach usually aggregate the expression of genes into new composite features...
Autores principales: | Staiger, Christine, Cadot, Sidney, Györffy, Balázs, Wessels, Lodewyk F. A., Klau, Gunnar W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870302/ https://www.ncbi.nlm.nih.gov/pubmed/24391662 http://dx.doi.org/10.3389/fgene.2013.00289 |
Ejemplares similares
-
A Critical Evaluation of Network and Pathway-Based Classifiers for Outcome Prediction in Breast Cancer
por: Staiger, Christine, et al.
Publicado: (2012) -
Breast Cancer Subtype Specific Classifiers of Response to Neoadjuvant Chemotherapy Do Not Outperform Classifiers Trained on All Subtypes
por: de Ronde, Jorma J., et al.
Publicado: (2014) -
Dynamic classification using case-specific training cohorts outperforms static gene expression signatures in breast cancer
por: Győrffy, Balázs, et al.
Publicado: (2015) -
AI-based multi-PRS models outperform classical single-PRS models
por: Klau, Jan Henric, et al.
Publicado: (2023) -
Interaction-Based Feature Selection Algorithm Outperforms Polygenic Risk Score in Predicting Parkinson’s Disease Status
por: Cope, Justin L., et al.
Publicado: (2021)