Cargando…
Multi-Matrices Factorization with Application to Missing Sensor Data Imputation
We formulate a multi-matrices factorization model (MMF) for the missing sensor data estimation problem. The estimation problem is adequately transformed into a matrix completion one. With MMF, an n-by-t real matrix, R, is adopted to represent the data collected by mobile sensors from n areas at the...
Autores principales: | Huang, Xiao-Yu, Li, Wubin, Chen, Kang, Xiang, Xian-Hong, Pan, Rong, Li, Lei, Cai, Wen-Xue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871111/ https://www.ncbi.nlm.nih.gov/pubmed/24201318 http://dx.doi.org/10.3390/s131115172 |
Ejemplares similares
-
Missing value imputation using least squares techniques in contaminated matrices
por: Garcia-Peña, Marisol, et al.
Publicado: (2022) -
Flexible imputation of missing data
por: van Buuren, Stef
Publicado: (2018) -
Missing Data and Imputation Methods
por: Schober, Patrick, et al.
Publicado: (2020) -
Missing value imputation in high-dimensional phenomic data: imputable or not, and how?
por: Liao, Serena G, et al.
Publicado: (2014) -
The Frailty Index, Missing Data, and Imputation
por: Pridham, Glen, et al.
Publicado: (2020)