Cargando…
Inference of Gene Regulatory Networks from Genetic Perturbations with Linear Regression Model
It is an effective strategy to use both genetic perturbation data and gene expression data to infer regulatory networks that aims to improve the detection accuracy of the regulatory relationships among genes. Based on both types of data, the genetic regulatory networks can be accurately modeled by S...
Autores principales: | Dong, Zijian, Song, Tiecheng, Yuan, Chuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871530/ https://www.ncbi.nlm.nih.gov/pubmed/24376676 http://dx.doi.org/10.1371/journal.pone.0083263 |
Ejemplares similares
-
Inference of SNP-Gene Regulatory Networks by Integrating Gene Expressions and Genetic Perturbations
por: Kim, Dong-Chul, et al.
Publicado: (2014) -
Inference of Gene Regulatory Networks with Sparse Structural Equation Models Exploiting Genetic Perturbations
por: Cai, Xiaodong, et al.
Publicado: (2013) -
Gene Regulatory Network Inference from Multifactorial Perturbation Data Using both Regression and Correlation Analyses
por: Xiong, Jie, et al.
Publicado: (2012) -
A robust gene regulatory network inference method base on Kalman
filter and linear regression
por: Pirgazi, Jamshid, et al.
Publicado: (2018) -
Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks
por: Penfold, Christopher A., et al.
Publicado: (2012)