Cargando…

Growth Pattern Analysis of Murine Lung Neoplasms by Advanced Semi-Automated Quantification of Micro-CT Images

Computed tomography (CT) is a non-invasive imaging modality used to monitor human lung cancers. Typically, tumor volumes are calculated using manual or semi-automated methods that require substantial user input, and an exponential growth model is used to predict tumor growth. However, these measurem...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Minxing, Jirapatnakul, Artit, Biancardi, Alberto, Riccio, Mark L., Weiss, Robert S., Reeves, Anthony P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871568/
https://www.ncbi.nlm.nih.gov/pubmed/24376755
http://dx.doi.org/10.1371/journal.pone.0083806
_version_ 1782296836946526208
author Li, Minxing
Jirapatnakul, Artit
Biancardi, Alberto
Riccio, Mark L.
Weiss, Robert S.
Reeves, Anthony P.
author_facet Li, Minxing
Jirapatnakul, Artit
Biancardi, Alberto
Riccio, Mark L.
Weiss, Robert S.
Reeves, Anthony P.
author_sort Li, Minxing
collection PubMed
description Computed tomography (CT) is a non-invasive imaging modality used to monitor human lung cancers. Typically, tumor volumes are calculated using manual or semi-automated methods that require substantial user input, and an exponential growth model is used to predict tumor growth. However, these measurement methodologies are time-consuming and can lack consistency. In addition, the availability of datasets with sequential images of the same tumor that are needed to characterize in vivo growth patterns for human lung cancers is limited due to treatment interventions and radiation exposure associated with multiple scans. In this paper, we performed micro-CT imaging of mouse lung cancers induced by overexpression of ribonucleotide reductase, a key enzyme in nucleotide biosynthesis, and developed an advanced semi-automated algorithm for efficient and accurate tumor volume measurement. Tumor volumes determined by the algorithm were first validated by comparison with results from manual methods for volume determination as well as direct physical measurements. A longitudinal study was then performed to investigate in vivo murine lung tumor growth patterns. Individual mice were imaged at least three times, with at least three weeks between scans. The tumors analyzed exhibited an exponential growth pattern, with an average doubling time of 57.08 days. The accuracy of the algorithm in the longitudinal study was also confirmed by comparing its output with manual measurements. These results suggest an exponential growth model for lung neoplasms and establish a new advanced semi-automated algorithm to measure lung tumor volume in mice that can aid efforts to improve lung cancer diagnosis and the evaluation of therapeutic responses.
format Online
Article
Text
id pubmed-3871568
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-38715682013-12-27 Growth Pattern Analysis of Murine Lung Neoplasms by Advanced Semi-Automated Quantification of Micro-CT Images Li, Minxing Jirapatnakul, Artit Biancardi, Alberto Riccio, Mark L. Weiss, Robert S. Reeves, Anthony P. PLoS One Research Article Computed tomography (CT) is a non-invasive imaging modality used to monitor human lung cancers. Typically, tumor volumes are calculated using manual or semi-automated methods that require substantial user input, and an exponential growth model is used to predict tumor growth. However, these measurement methodologies are time-consuming and can lack consistency. In addition, the availability of datasets with sequential images of the same tumor that are needed to characterize in vivo growth patterns for human lung cancers is limited due to treatment interventions and radiation exposure associated with multiple scans. In this paper, we performed micro-CT imaging of mouse lung cancers induced by overexpression of ribonucleotide reductase, a key enzyme in nucleotide biosynthesis, and developed an advanced semi-automated algorithm for efficient and accurate tumor volume measurement. Tumor volumes determined by the algorithm were first validated by comparison with results from manual methods for volume determination as well as direct physical measurements. A longitudinal study was then performed to investigate in vivo murine lung tumor growth patterns. Individual mice were imaged at least three times, with at least three weeks between scans. The tumors analyzed exhibited an exponential growth pattern, with an average doubling time of 57.08 days. The accuracy of the algorithm in the longitudinal study was also confirmed by comparing its output with manual measurements. These results suggest an exponential growth model for lung neoplasms and establish a new advanced semi-automated algorithm to measure lung tumor volume in mice that can aid efforts to improve lung cancer diagnosis and the evaluation of therapeutic responses. Public Library of Science 2013-12-23 /pmc/articles/PMC3871568/ /pubmed/24376755 http://dx.doi.org/10.1371/journal.pone.0083806 Text en © 2013 Li et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Li, Minxing
Jirapatnakul, Artit
Biancardi, Alberto
Riccio, Mark L.
Weiss, Robert S.
Reeves, Anthony P.
Growth Pattern Analysis of Murine Lung Neoplasms by Advanced Semi-Automated Quantification of Micro-CT Images
title Growth Pattern Analysis of Murine Lung Neoplasms by Advanced Semi-Automated Quantification of Micro-CT Images
title_full Growth Pattern Analysis of Murine Lung Neoplasms by Advanced Semi-Automated Quantification of Micro-CT Images
title_fullStr Growth Pattern Analysis of Murine Lung Neoplasms by Advanced Semi-Automated Quantification of Micro-CT Images
title_full_unstemmed Growth Pattern Analysis of Murine Lung Neoplasms by Advanced Semi-Automated Quantification of Micro-CT Images
title_short Growth Pattern Analysis of Murine Lung Neoplasms by Advanced Semi-Automated Quantification of Micro-CT Images
title_sort growth pattern analysis of murine lung neoplasms by advanced semi-automated quantification of micro-ct images
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871568/
https://www.ncbi.nlm.nih.gov/pubmed/24376755
http://dx.doi.org/10.1371/journal.pone.0083806
work_keys_str_mv AT liminxing growthpatternanalysisofmurinelungneoplasmsbyadvancedsemiautomatedquantificationofmicroctimages
AT jirapatnakulartit growthpatternanalysisofmurinelungneoplasmsbyadvancedsemiautomatedquantificationofmicroctimages
AT biancardialberto growthpatternanalysisofmurinelungneoplasmsbyadvancedsemiautomatedquantificationofmicroctimages
AT ricciomarkl growthpatternanalysisofmurinelungneoplasmsbyadvancedsemiautomatedquantificationofmicroctimages
AT weissroberts growthpatternanalysisofmurinelungneoplasmsbyadvancedsemiautomatedquantificationofmicroctimages
AT reevesanthonyp growthpatternanalysisofmurinelungneoplasmsbyadvancedsemiautomatedquantificationofmicroctimages