Cargando…
A Novel Semi-Supervised Methodology for Extracting Tumor Type-Specific MRS Sources in Human Brain Data
BACKGROUND: The clinical investigation of human brain tumors often starts with a non-invasive imaging study, providing information about the tumor extent and location, but little insight into the biochemistry of the analyzed tissue. Magnetic Resonance Spectroscopy can complement imaging by supplying...
Autores principales: | Ortega-Martorell, Sandra, Ruiz, Héctor, Vellido, Alfredo, Olier, Iván, Romero, Enrique, Julià-Sapé, Margarida, Martín, José D., Jarman, Ian H., Arús, Carles, Lisboa, Paulo J. G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871596/ https://www.ncbi.nlm.nih.gov/pubmed/24376744 http://dx.doi.org/10.1371/journal.pone.0083773 |
Ejemplares similares
-
Non-negative matrix factorisation methods for the spectral decomposition of MRS data from human brain tumours
por: Ortega-Martorell, Sandra, et al.
Publicado: (2012) -
SpectraClassifier 1.0: a user friendly, automated MRS-based classifier-development system
por: Ortega-Martorell, Sandra, et al.
Publicado: (2010) -
Convex Non-Negative Matrix Factorization for Brain Tumor Delimitation from MRSI Data
por: Ortega-Martorell, Sandra, et al.
Publicado: (2012) -
From raw data to data-analysis for magnetic resonance spectroscopy – the missing link: jMRUI2XML
por: Mocioiu, Victor, et al.
Publicado: (2015) -
Unraveling response to temozolomide in preclinical GL261 glioblastoma with MRI/MRSI using radiomics and signal source extraction
por: Núñez, Luis Miguel, et al.
Publicado: (2020)