Cargando…

Blood Oxygen Depletion Is Independent of Dive Function in a Deep Diving Vertebrate, the Northern Elephant Seal

Although energetics is fundamental to animal ecology, traditional methods of determining metabolic rate are neither direct nor instantaneous. Recently, continuous blood oxygen (O(2)) measurements were used to assess energy expenditure in diving elephant seals (Mirounga angustirostris), demonstrating...

Descripción completa

Detalles Bibliográficos
Autores principales: Meir, Jessica U., Robinson, Patrick W., Vilchis, L. Ignacio, Kooyman, Gerald L., Costa, Daniel P., Ponganis, Paul J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871621/
https://www.ncbi.nlm.nih.gov/pubmed/24376671
http://dx.doi.org/10.1371/journal.pone.0083248
_version_ 1782296848867786752
author Meir, Jessica U.
Robinson, Patrick W.
Vilchis, L. Ignacio
Kooyman, Gerald L.
Costa, Daniel P.
Ponganis, Paul J.
author_facet Meir, Jessica U.
Robinson, Patrick W.
Vilchis, L. Ignacio
Kooyman, Gerald L.
Costa, Daniel P.
Ponganis, Paul J.
author_sort Meir, Jessica U.
collection PubMed
description Although energetics is fundamental to animal ecology, traditional methods of determining metabolic rate are neither direct nor instantaneous. Recently, continuous blood oxygen (O(2)) measurements were used to assess energy expenditure in diving elephant seals (Mirounga angustirostris), demonstrating that an exceptional hypoxemic tolerance and exquisite management of blood O(2) stores underlie the extraordinary diving capability of this consummate diver. As the detailed relationship of energy expenditure and dive behavior remains unknown, we integrated behavior, ecology, and physiology to characterize the costs of different types of dives of elephant seals. Elephant seal dive profiles were analyzed and O(2) utilization was classified according to dive type (overall function of dive: transit, foraging, food processing/rest). This is the first account linking behavior at this level with in vivo blood O(2) measurements in an animal freely diving at sea, allowing us to assess patterns of O(2) utilization and energy expenditure between various behaviors and activities in an animal in the wild. In routine dives of elephant seals, the blood O(2) store was significantly depleted to a similar range irrespective of dive function, suggesting that all dive types have equal costs in terms of blood O(2) depletion. Here, we present the first physiological evidence that all dive types have similarly high blood O(2) demands, supporting an energy balance strategy achieved by devoting one major task to a given dive, thereby separating dive functions into distinct dive types. This strategy may optimize O(2) store utilization and recovery, consequently maximizing time underwater and allowing these animals to take full advantage of their underwater resources. This approach may be important to optimizing energy expenditure throughout a dive bout or at-sea foraging trip and is well suited to the lifestyle of an elephant seal, which spends > 90% of its time at sea submerged making diving its most “natural” state.
format Online
Article
Text
id pubmed-3871621
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-38716212013-12-27 Blood Oxygen Depletion Is Independent of Dive Function in a Deep Diving Vertebrate, the Northern Elephant Seal Meir, Jessica U. Robinson, Patrick W. Vilchis, L. Ignacio Kooyman, Gerald L. Costa, Daniel P. Ponganis, Paul J. PLoS One Research Article Although energetics is fundamental to animal ecology, traditional methods of determining metabolic rate are neither direct nor instantaneous. Recently, continuous blood oxygen (O(2)) measurements were used to assess energy expenditure in diving elephant seals (Mirounga angustirostris), demonstrating that an exceptional hypoxemic tolerance and exquisite management of blood O(2) stores underlie the extraordinary diving capability of this consummate diver. As the detailed relationship of energy expenditure and dive behavior remains unknown, we integrated behavior, ecology, and physiology to characterize the costs of different types of dives of elephant seals. Elephant seal dive profiles were analyzed and O(2) utilization was classified according to dive type (overall function of dive: transit, foraging, food processing/rest). This is the first account linking behavior at this level with in vivo blood O(2) measurements in an animal freely diving at sea, allowing us to assess patterns of O(2) utilization and energy expenditure between various behaviors and activities in an animal in the wild. In routine dives of elephant seals, the blood O(2) store was significantly depleted to a similar range irrespective of dive function, suggesting that all dive types have equal costs in terms of blood O(2) depletion. Here, we present the first physiological evidence that all dive types have similarly high blood O(2) demands, supporting an energy balance strategy achieved by devoting one major task to a given dive, thereby separating dive functions into distinct dive types. This strategy may optimize O(2) store utilization and recovery, consequently maximizing time underwater and allowing these animals to take full advantage of their underwater resources. This approach may be important to optimizing energy expenditure throughout a dive bout or at-sea foraging trip and is well suited to the lifestyle of an elephant seal, which spends > 90% of its time at sea submerged making diving its most “natural” state. Public Library of Science 2013-12-23 /pmc/articles/PMC3871621/ /pubmed/24376671 http://dx.doi.org/10.1371/journal.pone.0083248 Text en © 2013 Meir et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Meir, Jessica U.
Robinson, Patrick W.
Vilchis, L. Ignacio
Kooyman, Gerald L.
Costa, Daniel P.
Ponganis, Paul J.
Blood Oxygen Depletion Is Independent of Dive Function in a Deep Diving Vertebrate, the Northern Elephant Seal
title Blood Oxygen Depletion Is Independent of Dive Function in a Deep Diving Vertebrate, the Northern Elephant Seal
title_full Blood Oxygen Depletion Is Independent of Dive Function in a Deep Diving Vertebrate, the Northern Elephant Seal
title_fullStr Blood Oxygen Depletion Is Independent of Dive Function in a Deep Diving Vertebrate, the Northern Elephant Seal
title_full_unstemmed Blood Oxygen Depletion Is Independent of Dive Function in a Deep Diving Vertebrate, the Northern Elephant Seal
title_short Blood Oxygen Depletion Is Independent of Dive Function in a Deep Diving Vertebrate, the Northern Elephant Seal
title_sort blood oxygen depletion is independent of dive function in a deep diving vertebrate, the northern elephant seal
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871621/
https://www.ncbi.nlm.nih.gov/pubmed/24376671
http://dx.doi.org/10.1371/journal.pone.0083248
work_keys_str_mv AT meirjessicau bloodoxygendepletionisindependentofdivefunctioninadeepdivingvertebratethenorthernelephantseal
AT robinsonpatrickw bloodoxygendepletionisindependentofdivefunctioninadeepdivingvertebratethenorthernelephantseal
AT vilchislignacio bloodoxygendepletionisindependentofdivefunctioninadeepdivingvertebratethenorthernelephantseal
AT kooymangeraldl bloodoxygendepletionisindependentofdivefunctioninadeepdivingvertebratethenorthernelephantseal
AT costadanielp bloodoxygendepletionisindependentofdivefunctioninadeepdivingvertebratethenorthernelephantseal
AT ponganispaulj bloodoxygendepletionisindependentofdivefunctioninadeepdivingvertebratethenorthernelephantseal