Cargando…

Complex Visual Search in Children and Adolescents: Effects of Age and Performance on fMRI Activation

Complex visuospatial processing relies on distributed neural networks involving occipital, parietal and frontal brain regions. Effects of physiological maturation (during normal brain development) and proficiency on tasks requiring complex visuospatial processing have not yet been studied extensivel...

Descripción completa

Detalles Bibliográficos
Autores principales: Lidzba, Karen, Ebner, Kathina, Hauser, Till-Karsten, Wilke, Marko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871624/
https://www.ncbi.nlm.nih.gov/pubmed/24376871
http://dx.doi.org/10.1371/journal.pone.0085168
Descripción
Sumario:Complex visuospatial processing relies on distributed neural networks involving occipital, parietal and frontal brain regions. Effects of physiological maturation (during normal brain development) and proficiency on tasks requiring complex visuospatial processing have not yet been studied extensively, as they are almost invariably interrelated. We therefore aimed at dissociating the effects of age and performance on functional MRI (fMRI) activation in a complex visual search task. In our cross-sectional study, healthy children and adolescents (n = 43, 19 females, 7-17 years) performed a complex visual search task during fMRI. Resulting activation was analysed with regard to the differential effects of age and performance. Our results are compatible with an increase in the neural network's efficacy with age: within occipital and parietal cortex, the core regions of the visual exploration network, activation increased with age, and more so in the right than in the left hemisphere. Further, activation outside the visual search network decreased with age, mainly in left inferior frontal, middle temporal, and inferior parietal cortex. High-performers had stronger activation in right superior parietal cortex, suggesting a more mature visual search network. We could not see effects of age or performance in frontal cortex. Our results show that effects of physiological maturation and effects of performance, while usually intertwined, can be successfully disentangled and investigated using fMRI in children and adolescents.