Cargando…

Optimal Homotopy Asymptotic Method for Flow and Heat Transfer of a Viscoelastic Fluid in an Axisymmetric Channel with a Porous Wall

In this article, an approximate analytical solution of flow and heat transfer for a viscoelastic fluid in an axisymmetric channel with porous wall is presented. The solution is obtained through the use of a powerful method known as Optimal Homotopy Asymptotic Method (OHAM). We obtained the approxima...

Descripción completa

Detalles Bibliográficos
Autores principales: Mabood, Fazle, Khan, Waqar A., Ismail, Ahmad Izani
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871629/
https://www.ncbi.nlm.nih.gov/pubmed/24376722
http://dx.doi.org/10.1371/journal.pone.0083581
Descripción
Sumario:In this article, an approximate analytical solution of flow and heat transfer for a viscoelastic fluid in an axisymmetric channel with porous wall is presented. The solution is obtained through the use of a powerful method known as Optimal Homotopy Asymptotic Method (OHAM). We obtained the approximate analytical solution for dimensionless velocity and temperature for various parameters. The influence and effect of different parameters on dimensionless velocity, temperature, friction factor, and rate of heat transfer are presented graphically. We also compared our solution with those obtained by other methods and it is found that OHAM solution is better than the other methods considered. This shows that OHAM is reliable for use to solve strongly nonlinear problems in heat transfer phenomena.