Cargando…
Targeting CD28, CTLA-4 and PD-L1 Costimulation Differentially Controls Immune Synapses and Function of Human Regulatory and Conventional T-Cells
CD28, CTLA-4 and PD-L1, the three identified ligands for CD80/86, are pivotal positive and negative costimulatory molecules that, among other functions, control T cell motility and formation of immune synapse between T cells and antigen-presenting cells (APCs). What remains incompletely understood i...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871694/ https://www.ncbi.nlm.nih.gov/pubmed/24376655 http://dx.doi.org/10.1371/journal.pone.0083139 |
_version_ | 1782296865210892288 |
---|---|
author | Dilek, Nahzli Poirier, Nicolas Hulin, Philippe Coulon, Flora Mary, Caroline Ville, Simon Vie, Henri Clémenceau, Béatrice Blancho, Gilles Vanhove, Bernard |
author_facet | Dilek, Nahzli Poirier, Nicolas Hulin, Philippe Coulon, Flora Mary, Caroline Ville, Simon Vie, Henri Clémenceau, Béatrice Blancho, Gilles Vanhove, Bernard |
author_sort | Dilek, Nahzli |
collection | PubMed |
description | CD28, CTLA-4 and PD-L1, the three identified ligands for CD80/86, are pivotal positive and negative costimulatory molecules that, among other functions, control T cell motility and formation of immune synapse between T cells and antigen-presenting cells (APCs). What remains incompletely understood is how CD28 leads to the activation of effector T cells (Teff) but inhibition of suppression by regulatory T cells (Tregs), while CTLA-4 and PD-L1 inhibit Teff function but are crucial for the suppressive function of Tregs. Using alloreactive human T cells and blocking antibodies, we show here by live cell dynamic microscopy that CD28, CTLA-4, and PD-L1 differentially control velocity, motility and immune synapse formation in activated Teff versus Tregs. Selectively antagonizing CD28 costimulation increased Treg dwell time with APCs and induced calcium mobilization which translated in increased Treg suppressive activity, in contrast with the dampening effect on Teff responses. The increase in Treg suppressive activity after CD28 blockade was also confirmed with polyclonal Tregs. Whereas CTLA-4 played a critical role in Teff by reversing TCR-induced STOP signals, it failed to affect motility in Tregs but was essential for formation of the Treg immune synapse. Furthermore, we identified a novel role for PD-L1-CD80 interactions in suppressing motility specifically in Tregs. Thus, our findings reveal that the three identified ligands of CD80/86, CD28, CTLA-4 and PD-L1, differentially control immune synapse formation and function of the human Teff and Treg cells analyzed here. Individually targeting CD28, CTLA-4 and PD-L1 might therefore represent a valuable therapeutic strategy to treat immune disorders where effector and regulatory T cell functions need to be differentially targeted. |
format | Online Article Text |
id | pubmed-3871694 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38716942013-12-27 Targeting CD28, CTLA-4 and PD-L1 Costimulation Differentially Controls Immune Synapses and Function of Human Regulatory and Conventional T-Cells Dilek, Nahzli Poirier, Nicolas Hulin, Philippe Coulon, Flora Mary, Caroline Ville, Simon Vie, Henri Clémenceau, Béatrice Blancho, Gilles Vanhove, Bernard PLoS One Research Article CD28, CTLA-4 and PD-L1, the three identified ligands for CD80/86, are pivotal positive and negative costimulatory molecules that, among other functions, control T cell motility and formation of immune synapse between T cells and antigen-presenting cells (APCs). What remains incompletely understood is how CD28 leads to the activation of effector T cells (Teff) but inhibition of suppression by regulatory T cells (Tregs), while CTLA-4 and PD-L1 inhibit Teff function but are crucial for the suppressive function of Tregs. Using alloreactive human T cells and blocking antibodies, we show here by live cell dynamic microscopy that CD28, CTLA-4, and PD-L1 differentially control velocity, motility and immune synapse formation in activated Teff versus Tregs. Selectively antagonizing CD28 costimulation increased Treg dwell time with APCs and induced calcium mobilization which translated in increased Treg suppressive activity, in contrast with the dampening effect on Teff responses. The increase in Treg suppressive activity after CD28 blockade was also confirmed with polyclonal Tregs. Whereas CTLA-4 played a critical role in Teff by reversing TCR-induced STOP signals, it failed to affect motility in Tregs but was essential for formation of the Treg immune synapse. Furthermore, we identified a novel role for PD-L1-CD80 interactions in suppressing motility specifically in Tregs. Thus, our findings reveal that the three identified ligands of CD80/86, CD28, CTLA-4 and PD-L1, differentially control immune synapse formation and function of the human Teff and Treg cells analyzed here. Individually targeting CD28, CTLA-4 and PD-L1 might therefore represent a valuable therapeutic strategy to treat immune disorders where effector and regulatory T cell functions need to be differentially targeted. Public Library of Science 2013-12-23 /pmc/articles/PMC3871694/ /pubmed/24376655 http://dx.doi.org/10.1371/journal.pone.0083139 Text en © 2013 Dilek et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Dilek, Nahzli Poirier, Nicolas Hulin, Philippe Coulon, Flora Mary, Caroline Ville, Simon Vie, Henri Clémenceau, Béatrice Blancho, Gilles Vanhove, Bernard Targeting CD28, CTLA-4 and PD-L1 Costimulation Differentially Controls Immune Synapses and Function of Human Regulatory and Conventional T-Cells |
title | Targeting CD28, CTLA-4 and PD-L1 Costimulation Differentially Controls Immune Synapses and Function of Human Regulatory and Conventional T-Cells |
title_full | Targeting CD28, CTLA-4 and PD-L1 Costimulation Differentially Controls Immune Synapses and Function of Human Regulatory and Conventional T-Cells |
title_fullStr | Targeting CD28, CTLA-4 and PD-L1 Costimulation Differentially Controls Immune Synapses and Function of Human Regulatory and Conventional T-Cells |
title_full_unstemmed | Targeting CD28, CTLA-4 and PD-L1 Costimulation Differentially Controls Immune Synapses and Function of Human Regulatory and Conventional T-Cells |
title_short | Targeting CD28, CTLA-4 and PD-L1 Costimulation Differentially Controls Immune Synapses and Function of Human Regulatory and Conventional T-Cells |
title_sort | targeting cd28, ctla-4 and pd-l1 costimulation differentially controls immune synapses and function of human regulatory and conventional t-cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871694/ https://www.ncbi.nlm.nih.gov/pubmed/24376655 http://dx.doi.org/10.1371/journal.pone.0083139 |
work_keys_str_mv | AT dileknahzli targetingcd28ctla4andpdl1costimulationdifferentiallycontrolsimmunesynapsesandfunctionofhumanregulatoryandconventionaltcells AT poiriernicolas targetingcd28ctla4andpdl1costimulationdifferentiallycontrolsimmunesynapsesandfunctionofhumanregulatoryandconventionaltcells AT hulinphilippe targetingcd28ctla4andpdl1costimulationdifferentiallycontrolsimmunesynapsesandfunctionofhumanregulatoryandconventionaltcells AT coulonflora targetingcd28ctla4andpdl1costimulationdifferentiallycontrolsimmunesynapsesandfunctionofhumanregulatoryandconventionaltcells AT marycaroline targetingcd28ctla4andpdl1costimulationdifferentiallycontrolsimmunesynapsesandfunctionofhumanregulatoryandconventionaltcells AT villesimon targetingcd28ctla4andpdl1costimulationdifferentiallycontrolsimmunesynapsesandfunctionofhumanregulatoryandconventionaltcells AT viehenri targetingcd28ctla4andpdl1costimulationdifferentiallycontrolsimmunesynapsesandfunctionofhumanregulatoryandconventionaltcells AT clemenceaubeatrice targetingcd28ctla4andpdl1costimulationdifferentiallycontrolsimmunesynapsesandfunctionofhumanregulatoryandconventionaltcells AT blanchogilles targetingcd28ctla4andpdl1costimulationdifferentiallycontrolsimmunesynapsesandfunctionofhumanregulatoryandconventionaltcells AT vanhovebernard targetingcd28ctla4andpdl1costimulationdifferentiallycontrolsimmunesynapsesandfunctionofhumanregulatoryandconventionaltcells |