Cargando…

Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana

The interplay of plant hormones and glucose (Glu) in regulating glucosinolate accumulation in Arabidopsis thaliana was investigated in this study. Glucose-induced glucosinolate biosynthesis was enhanced significantly by the addition of jasmonic acid (JA), whereas the synergistic effect of salicylic...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Rongfang, Shen, Wangshu, Qian, Hongmei, Zhang, Min, Liu, Lihong, Wang, Qiaomei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871825/
https://www.ncbi.nlm.nih.gov/pubmed/24151308
http://dx.doi.org/10.1093/jxb/ert348
Descripción
Sumario:The interplay of plant hormones and glucose (Glu) in regulating glucosinolate accumulation in Arabidopsis thaliana was investigated in this study. Glucose-induced glucosinolate biosynthesis was enhanced significantly by the addition of jasmonic acid (JA), whereas the synergistic effect of salicylic acid (SA) and Glu was less obvious. The enhanced glucosinolate accumulation is associated with elevated expression of genes in glucosinolate biosynthetic pathway, as well as the transcription factors involved in their regulation, such as MYB28, MYB29, MYB34, and MYB122. The induction of indolic and aliphatic glucosinolates after treatment with JA and Glu in JA-insensitive mutants, coi1, jar1, and jin1, was compromised. Moreover, the effect of JA and Glu on glucosinolate contents was dramatically reduced in Glu-insensitive mutants, rgs1-2 and abi5-7. These results indicate a crosstalk between JA and Glu signalling in the regulation of glucosinolate biosynthesis. JA signalling, RGS1 (the putative membrane receptor of Glu signalling), and ABI5, are involved in the synergistic effect of JA and Glu on glucosinolate accumulation.