Cargando…

Efficient Suppression of Electron–Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO(2) Nanowires for Photoelectrochemical Water Splitting

[Image: see text] There is an increasing level of interest in the use of black TiO(2) prepared by thermal hydrogen treatments (H:TiO(2)) due to the potential to enhance both the photocatalytic and the light-harvesting properties of TiO(2). Here, we examine oxygen-deficient H:TiO(2) nanotube arrays t...

Descripción completa

Detalles Bibliográficos
Autores principales: Pesci, Federico M., Wang, Gongming, Klug, David R., Li, Yat, Cowan, Alexander J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2013
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871891/
https://www.ncbi.nlm.nih.gov/pubmed/24376902
http://dx.doi.org/10.1021/jp4099914
_version_ 1782296894336139264
author Pesci, Federico M.
Wang, Gongming
Klug, David R.
Li, Yat
Cowan, Alexander J.
author_facet Pesci, Federico M.
Wang, Gongming
Klug, David R.
Li, Yat
Cowan, Alexander J.
author_sort Pesci, Federico M.
collection PubMed
description [Image: see text] There is an increasing level of interest in the use of black TiO(2) prepared by thermal hydrogen treatments (H:TiO(2)) due to the potential to enhance both the photocatalytic and the light-harvesting properties of TiO(2). Here, we examine oxygen-deficient H:TiO(2) nanotube arrays that have previously achieved very high solar-to-hydrogen (STH) efficiencies due to incident photon-to-current efficiency (IPCE) values of >90% for photoelectrochemical water splitting at only 0.4 V vs RHE under UV illumination. Our transient absorption (TA) mechanistic study provides strong evidence that the improved electrical properties of oxygen-deficient TiO(2) enables remarkably efficient spatial separation of electron–hole pairs on the submicrosecond time scale at moderate applied bias, and this coupled to effective suppression of microsecond to seconds charge carrier recombination is the primary factor behind the dramatically improved photoelectrochemical activity.
format Online
Article
Text
id pubmed-3871891
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-38718912013-12-25 Efficient Suppression of Electron–Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO(2) Nanowires for Photoelectrochemical Water Splitting Pesci, Federico M. Wang, Gongming Klug, David R. Li, Yat Cowan, Alexander J. J Phys Chem C Nanomater Interfaces [Image: see text] There is an increasing level of interest in the use of black TiO(2) prepared by thermal hydrogen treatments (H:TiO(2)) due to the potential to enhance both the photocatalytic and the light-harvesting properties of TiO(2). Here, we examine oxygen-deficient H:TiO(2) nanotube arrays that have previously achieved very high solar-to-hydrogen (STH) efficiencies due to incident photon-to-current efficiency (IPCE) values of >90% for photoelectrochemical water splitting at only 0.4 V vs RHE under UV illumination. Our transient absorption (TA) mechanistic study provides strong evidence that the improved electrical properties of oxygen-deficient TiO(2) enables remarkably efficient spatial separation of electron–hole pairs on the submicrosecond time scale at moderate applied bias, and this coupled to effective suppression of microsecond to seconds charge carrier recombination is the primary factor behind the dramatically improved photoelectrochemical activity. American Chemical Society 2013-11-19 2013-12-05 /pmc/articles/PMC3871891/ /pubmed/24376902 http://dx.doi.org/10.1021/jp4099914 Text en Copyright © 2013 American Chemical Society Terms of Use CC-BY (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html)
spellingShingle Pesci, Federico M.
Wang, Gongming
Klug, David R.
Li, Yat
Cowan, Alexander J.
Efficient Suppression of Electron–Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO(2) Nanowires for Photoelectrochemical Water Splitting
title Efficient Suppression of Electron–Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO(2) Nanowires for Photoelectrochemical Water Splitting
title_full Efficient Suppression of Electron–Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO(2) Nanowires for Photoelectrochemical Water Splitting
title_fullStr Efficient Suppression of Electron–Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO(2) Nanowires for Photoelectrochemical Water Splitting
title_full_unstemmed Efficient Suppression of Electron–Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO(2) Nanowires for Photoelectrochemical Water Splitting
title_short Efficient Suppression of Electron–Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO(2) Nanowires for Photoelectrochemical Water Splitting
title_sort efficient suppression of electron–hole recombination in oxygen-deficient hydrogen-treated tio(2) nanowires for photoelectrochemical water splitting
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871891/
https://www.ncbi.nlm.nih.gov/pubmed/24376902
http://dx.doi.org/10.1021/jp4099914
work_keys_str_mv AT pescifedericom efficientsuppressionofelectronholerecombinationinoxygendeficienthydrogentreatedtio2nanowiresforphotoelectrochemicalwatersplitting
AT wanggongming efficientsuppressionofelectronholerecombinationinoxygendeficienthydrogentreatedtio2nanowiresforphotoelectrochemicalwatersplitting
AT klugdavidr efficientsuppressionofelectronholerecombinationinoxygendeficienthydrogentreatedtio2nanowiresforphotoelectrochemicalwatersplitting
AT liyat efficientsuppressionofelectronholerecombinationinoxygendeficienthydrogentreatedtio2nanowiresforphotoelectrochemicalwatersplitting
AT cowanalexanderj efficientsuppressionofelectronholerecombinationinoxygendeficienthydrogentreatedtio2nanowiresforphotoelectrochemicalwatersplitting