Cargando…
Statistical Optimization and In Vitro Evaluation of Metformin Hydrochloride Asymmetric Membrane Capsules Prepared by a Novel Semiautomatic Manufacturing Approach
Asymmetric membrane capsules (AMCs) are one of the novel osmotic delivery devices which deliver a wide range of drugs in controlled manner. In the present work, we developed and validated a semiautomatic process by fabricating a hydraulic assisted bench top model for manufacturing AMCs. The capsule...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871908/ https://www.ncbi.nlm.nih.gov/pubmed/24381767 http://dx.doi.org/10.1155/2013/719196 |
_version_ | 1782296897988329472 |
---|---|
author | Banala, Venkatesh Teja Srinivasan, Bharath Rajamanickam, Deveswaran Basappa Veerbadraiah, Basavaraj Varadarajan, Madhavan |
author_facet | Banala, Venkatesh Teja Srinivasan, Bharath Rajamanickam, Deveswaran Basappa Veerbadraiah, Basavaraj Varadarajan, Madhavan |
author_sort | Banala, Venkatesh Teja |
collection | PubMed |
description | Asymmetric membrane capsules (AMCs) are one of the novel osmotic delivery devices which deliver a wide range of drugs in controlled manner. In the present work, we developed and validated a semiautomatic process by fabricating a hydraulic assisted bench top model for manufacturing AMCs. The capsule walls of AMCs were prepared by dip coating phase inversion process using cellulose acetate butyrate (CAB) as coating polymer and propylene glycol (PG) as plasticizer and pore former. The comparative examination of physical parameters confirmed the consistency, efficiency, and reproducibility of the semiautomatic process over the manual procedure. The SEM studies revealed a thin dense region supported on a thicker porous membrane of the capsule shells. Formulations of AMCs were prepared based on a 2(3) full factorial design using metformin hydrochloride as the model drug. The effect of formulation variables such as concentration of PG and levels of fructose and potassium chloride were studied on the in vitro drug release using Design-Expert 8.0.2 (USA) software. From the in vitro release studies, it was observed that the concentration of pore former and level of osmogents had a direct effect on the drug release. From the validation studies of the optimized formulation (OPT) with the predicted response, it was observed that the drug release was independent of pH and agitation intensity but dependent on osmotic pressure of the dissolution medium. The OPT followed controlled zero-order release kinetics over a period of 13 h. |
format | Online Article Text |
id | pubmed-3871908 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-38719082013-12-31 Statistical Optimization and In Vitro Evaluation of Metformin Hydrochloride Asymmetric Membrane Capsules Prepared by a Novel Semiautomatic Manufacturing Approach Banala, Venkatesh Teja Srinivasan, Bharath Rajamanickam, Deveswaran Basappa Veerbadraiah, Basavaraj Varadarajan, Madhavan ISRN Pharm Research Article Asymmetric membrane capsules (AMCs) are one of the novel osmotic delivery devices which deliver a wide range of drugs in controlled manner. In the present work, we developed and validated a semiautomatic process by fabricating a hydraulic assisted bench top model for manufacturing AMCs. The capsule walls of AMCs were prepared by dip coating phase inversion process using cellulose acetate butyrate (CAB) as coating polymer and propylene glycol (PG) as plasticizer and pore former. The comparative examination of physical parameters confirmed the consistency, efficiency, and reproducibility of the semiautomatic process over the manual procedure. The SEM studies revealed a thin dense region supported on a thicker porous membrane of the capsule shells. Formulations of AMCs were prepared based on a 2(3) full factorial design using metformin hydrochloride as the model drug. The effect of formulation variables such as concentration of PG and levels of fructose and potassium chloride were studied on the in vitro drug release using Design-Expert 8.0.2 (USA) software. From the in vitro release studies, it was observed that the concentration of pore former and level of osmogents had a direct effect on the drug release. From the validation studies of the optimized formulation (OPT) with the predicted response, it was observed that the drug release was independent of pH and agitation intensity but dependent on osmotic pressure of the dissolution medium. The OPT followed controlled zero-order release kinetics over a period of 13 h. Hindawi Publishing Corporation 2013-12-08 /pmc/articles/PMC3871908/ /pubmed/24381767 http://dx.doi.org/10.1155/2013/719196 Text en Copyright © 2013 Venkatesh Teja Banala et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Banala, Venkatesh Teja Srinivasan, Bharath Rajamanickam, Deveswaran Basappa Veerbadraiah, Basavaraj Varadarajan, Madhavan Statistical Optimization and In Vitro Evaluation of Metformin Hydrochloride Asymmetric Membrane Capsules Prepared by a Novel Semiautomatic Manufacturing Approach |
title | Statistical Optimization and In Vitro Evaluation of Metformin Hydrochloride Asymmetric Membrane Capsules Prepared by a Novel Semiautomatic Manufacturing Approach |
title_full | Statistical Optimization and In Vitro Evaluation of Metformin Hydrochloride Asymmetric Membrane Capsules Prepared by a Novel Semiautomatic Manufacturing Approach |
title_fullStr | Statistical Optimization and In Vitro Evaluation of Metformin Hydrochloride Asymmetric Membrane Capsules Prepared by a Novel Semiautomatic Manufacturing Approach |
title_full_unstemmed | Statistical Optimization and In Vitro Evaluation of Metformin Hydrochloride Asymmetric Membrane Capsules Prepared by a Novel Semiautomatic Manufacturing Approach |
title_short | Statistical Optimization and In Vitro Evaluation of Metformin Hydrochloride Asymmetric Membrane Capsules Prepared by a Novel Semiautomatic Manufacturing Approach |
title_sort | statistical optimization and in vitro evaluation of metformin hydrochloride asymmetric membrane capsules prepared by a novel semiautomatic manufacturing approach |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871908/ https://www.ncbi.nlm.nih.gov/pubmed/24381767 http://dx.doi.org/10.1155/2013/719196 |
work_keys_str_mv | AT banalavenkateshteja statisticaloptimizationandinvitroevaluationofmetforminhydrochlorideasymmetricmembranecapsulespreparedbyanovelsemiautomaticmanufacturingapproach AT srinivasanbharath statisticaloptimizationandinvitroevaluationofmetforminhydrochlorideasymmetricmembranecapsulespreparedbyanovelsemiautomaticmanufacturingapproach AT rajamanickamdeveswaran statisticaloptimizationandinvitroevaluationofmetforminhydrochlorideasymmetricmembranecapsulespreparedbyanovelsemiautomaticmanufacturingapproach AT basappaveerbadraiahbasavaraj statisticaloptimizationandinvitroevaluationofmetforminhydrochlorideasymmetricmembranecapsulespreparedbyanovelsemiautomaticmanufacturingapproach AT varadarajanmadhavan statisticaloptimizationandinvitroevaluationofmetforminhydrochlorideasymmetricmembranecapsulespreparedbyanovelsemiautomaticmanufacturingapproach |