Cargando…

Existence Results for Differential Inclusions with Nonlinear Growth Conditions in Banach Spaces

In the Banach space setting, the existence of viable solutions for differential inclusions with nonlinear growth; that is, [Formula: see text] a.e. on I, x(t) ∈ S, ∀t ∈ I, x(0) = x (0) ∈ S, (∗), where S is a closed subset in a Banach space 𝕏, I = [0, T], (T > 0), F : I × S → 𝕏, is an upper semico...

Descripción completa

Detalles Bibliográficos
Autor principal: Bounkhel, Messaoud
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871914/
https://www.ncbi.nlm.nih.gov/pubmed/24382470
http://dx.doi.org/10.1155/2013/591620
Descripción
Sumario:In the Banach space setting, the existence of viable solutions for differential inclusions with nonlinear growth; that is, [Formula: see text] a.e. on I, x(t) ∈ S, ∀t ∈ I, x(0) = x (0) ∈ S, (∗), where S is a closed subset in a Banach space 𝕏, I = [0, T], (T > 0), F : I × S → 𝕏, is an upper semicontinuous set-valued mapping with convex values satisfying F(t, x) ⊂ c(t)(||x|| + ||x||(p))𝒦, ∀(t, x) ∈ I × S, where p ∈ ℝ, with p ≠ 1, and c ∈ C([0, T], ℝ(+)). The existence of solutions for nonconvex sweeping processes with perturbations with nonlinear growth is also proved in separable Hilbert spaces.