Cargando…
Experimental assessment of static and dynamic algorithms for gene regulation inference from time series expression data
Accurate inference of causal gene regulatory networks from gene expression data is an open bioinformatics challenge. Gene interactions are dynamical processes and consequently we can expect that the effect of any regulation action occurs after a certain temporal lag. However such lag is unknown a pr...
Autores principales: | Lopes, Miguel, Bontempi, Gianluca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3872039/ https://www.ncbi.nlm.nih.gov/pubmed/24400020 http://dx.doi.org/10.3389/fgene.2013.00303 |
Ejemplares similares
-
Inference of Genetic Networks From Time-Series and Static Gene Expression Data: Combining a Random-Forest-Based Inference Method With Feature Selection Methods
por: Kimura, Shuhei, et al.
Publicado: (2020) -
Relevance of different prior knowledge sources for inferring gene interaction networks
por: Olsen, Catharina, et al.
Publicado: (2014) -
The analytical landscape of static and temporal dynamics in transcriptome data
por: Oh, Sunghee, et al.
Publicado: (2014) -
Dynamics of Gene Co-expression Networks in Time-Series Data: A Case Study in Drosophila melanogaster Embryogenesis
por: Lau, Li Yieng, et al.
Publicado: (2020) -
Evaluating the Reproducibility of Single-Cell Gene Regulatory Network Inference Algorithms
por: Kang, Yoonjee, et al.
Publicado: (2021)