Cargando…

Novel Organic Membrane-based Thin-film Microsensors for the Determination of Heavy Metal Cations

A first step towards the fabrication and electrochemical evaluation of thin-film microsensors based on organic PVC membranes for the determination of Hg(II), Cd(II), Pb(II) and Cu(II) ions in solutions has been realised. The membrane-coating mixture used in the preparation of this new type of micros...

Descripción completa

Detalles Bibliográficos
Autores principales: Arida, Hassan A., Kloock, Joachim P., Schöning, Michael J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3872364/
Descripción
Sumario:A first step towards the fabrication and electrochemical evaluation of thin-film microsensors based on organic PVC membranes for the determination of Hg(II), Cd(II), Pb(II) and Cu(II) ions in solutions has been realised. The membrane-coating mixture used in the preparation of this new type of microsensors is incorporating PVC as supporting matrix, o-nitrophenyloctylether (o-NPOE) as solvent mediator and a recently synthesized Hg[dimethylglyoxime(phene)](2+) and Bis-(4-hydroxyacetophenone)-ethylenediamine as electroactive materials for Hg(II) and Cd(II), respectively. A set of three commercialised ionophores for Cd(II), Pb(II) and Cu(II) has been also used for comparison. Thin-film microsensors based on these membranes showed a Nernstian response of slope (26-30 mV/dec.) for the respective tested cations. The potentiometric response characteristics (linear range, pH range, detection limit and response time) are comparable with those obtained by conventional membranes as well as coated wire electrodes prepared from the same membrane. The realisation of the new organic membrane-based thin-film microsensors overcomes the problem of an insufficient selectivity of solid-state-based thin-film sensors.